Atmel

AT91SAM ARM-based Embbedded MPU

SAM9G15
DATASHEET

Features

* Core
— ARM926EJ-S™ ARM® Thumb® Processor running at up to 400 MHz @ 1.0V +/- 10%
— 16 Kbytes Data Cache, 16 Kbytes Instruction Cache, Memory Management Unit
* Memories
— One 64-Kbyte internal ROM embedding bootstrap routine: Boot on NAND Flash,
SDCard, DataFlash® or serial DataFlash. Programmable order.
— One 32-Kbyte internal SRAM, single-cycle access at system speed
— High Bandwidth Multi-port DDR2 Controller
— 32-bit External Bus Interface supporting 4-bank and 8-bank DDR2/LPDDR,
SDR/LPSDR, Static Memories
— MLC/SLC 8-bit NAND Controller, with up to 24-bit Programmable Multi-bit Error
Correcting Code (PMECC)
® System running at up to 133 MHz
— Power-on Reset Cells, Reset Controller, Shut Down Controller, Periodic Interval Timer,
Watchdog Timer and Real Time Clock
— Boot Mode Select Option, Remap Command
— Internal Low Power 32 kHz RC and Fast 12 MHz RC Oscillators
— Selectable 32768 Hz Low-power Oscillator and 12 MHz Oscillator
— One PLL for the system and one PLL at 480 MHz optimized for USB High Speed
— Twelve 32-bit-layer AHB Bus Matrix for large Bandwidth transfers
— Dual Peripheral Bridge with dedicated programmable clock for best performances
— Two dual port 8-channel DMA Controllers
— Advanced Interrupt Controller and Debug Unit
— Two Programmable External Clock Signals
* Low Power Mode
— Shut Down Controller with four 32-bit Battery Backup Registers
— Clock Generator and Power Management Controller
— Very Slow Clock Operating Mode, Software Programmable Power Optimization
Capabilities
* Peripherals
— LCD Controller with overlay, alpha-blending, rotation, scaling and color conversion
— USB Device High Speed, USB Host High Speed and USB Host Full Speed with
dedicated On-Chip Transceiver
— Two High Speed Memory Card Hosts
— Two Master/Slave Serial Peripheral Interfaces
— Two Three-channel 32-bit Timer/Counters
— One Synchronous Serial Controller
— One Four-channel 16-bit PWM Controller
— Three Two-wire Interfaces

— Three USARTS, two UARTSs
11052D-ATARM-31-Oct-12

11052D-ATARM-31-Oct-12

— One 12-channel 10-bit Touch-Screen Analog-to-Digital Converter
— Soft Modem
— Write Protected Registers

* |/O
— Four 32-bit Parallel Input/Output Controllers
— 105 Programmable 1/O Lines Multiplexed with up to Three Peripheral 1/Os
— Input Change Interrupt Capability on Each I/O Line, optional Schmitt trigger input
— Individually Programmable Open-drain, Pull-up and pull-down resistor, Synchronous
Output
* Package

® 217-ball BGA, pitch 0.8 mm

Atmel SAM9G15 [DATASHEET] 2

11052D-ATARM-31-Oct-12

1. Description

The SAM9G15, based on the ARM926EJ-S processor, runs at 400 MHz and integrates a rich set of peripherals to
support embedded industrial applications that require advanced user interfaces and high-speed communication.

The SAM9G15 features a graphics LCD controller with 4-layer overlay and 2D acceleration (picture-in-picture, alpha-
blending, scaling, rotation, color conversion), and a 10-bit ADC that supports 4/5-wire resistive touchscreen panels.
Multiple communication interfaces include a soft modem supporting exclusively the Conexant SmartDAA line driver, HS
USB Host and Device and FS USB Host with dedicated on-chip transceivers, two HS SDCard/SDIO/MMC interfaces,
USARTS, SPIs, 12S and TWIs.

The 10-layer bus matrix coupled with multiple DMA channels ensures uninterrupted data transfers with minimal
processor overhead.

The External Bus Interface incorporates controllers offering support for 4-bank and 8-bank DDR2/LPDDR,
SDRAM/LPSDRAM, static memories, as well as specific circuitry for MLC/SLC NAND Flash with integrated ECC up to
24 bits.

The SAM9G15 is available in a 217-ball BGA package with 0.8 mm ball pitch.

Atmel SAM9G15 [DATASHEET] 3

11052D-ATARM-31-Oct-12

4

11052D-ATARM-31-Oct-12

SAM9G15 [DATASHEET]

9
S
0
oL R R 2
3 SeLE SGIA
p&%@ psos%%uo 3 OOO% S
™
> 09 g8 SEIE STy 98
A & Ty &K SN £O LS
&€ 08858 & 88 88 & £558 FESSS
$ QOREE & & £ JE&§ NGO
FS HS
<S> System Controller _ JTAG / Boundary Scan _ Transc, du_mmo [EIO m <
pics T i
oY O In-Circuit Emulator
o0 &OAIVAIV AIC rc | pe [ea EBI
@ o > ARMO926EJ-S HS EHCI/
oﬁw ﬂ O |< DBGU weo Hs LcD 8-CH || s-cH S
R usB DMA || DMA DDR2SDR
P < _mwox_wm VMU mem% USB HOST Controller
PLLA PMC Bus Interface DMA DMA DMA
PLLUTMI i) i
O =[osciam
D ROM
* _Mw_ LPIT_1| [s2kB+96kB P
s | Memor
WDT YV v Vv % \4 YY__ VY Ocsa_‘o__wﬂ
4
PBR))
,r/%w 0SG 32K L,mor Multi-Layer AHB Matrix
2 € >
o > <]
O™ <«— sHDC
W%MC& |V|_ RTC —>
» —> ror 2
/_WWMA < RSTC v v v :
&> _ror])) INAND FiasH]
OO — vm:m:mﬂm, SRAM Peripheral Controller ||
K\® PIOA PIOD Bridge 32KB Bridge
PIOB PIOC
» v
v v v v v vy v v v v
FIFO FIFO TC0
™WIo USARTO o1 12-Channel
SPI SPIO SSC HSMCI1 HSMCI0 SMD TWI PWM USART1 m»mﬂ %Mw Ao.gwﬁm
SD/SDIO SD/SDIO TWI2 USART2 TC4 TouchScreen
TC5
e AAAA AAAAA AAAAA “r: “r A “Cr A h ;C:ﬁ v
m YYVYVYVVVVYVYVYVYVYYVYVYVYYVYY Yvy |y YVYY # é#ég
o
S PIO {
8 [11]]
m S H HH HHHHHHHHH@HHHH 999 HH q@ 99 H H HH HH H ﬂoﬁwigx ;z_ ¢S
[5} SVVDT O LTS
g S S P RSFOD SANSLSOELOLEE F P L FF & Fo& ® SUF TP S L L EIFIIR K 5§ O
> = SRR KSCERC SR S L SRR
C I LeN S & S &
m - £ Q NGRS &
1) &7 o7
g &8
X =
Q 5
(@)
m i
N
)
S
=
H =2
AN (i

Atmel

3. Signal Description

Table 3-1 gives details on the signal name classified by peripheral.

Table 3-1. Signal Description List

Signal Name Function Type Active Level
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input
XOUT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input
XOuUT32 Slow Clock Oscillator Output Output
VBG Bias Voltage Reference for USB Analog
PCKO-PCK1 Programmable Clock Output Output
Shutdown, Wakeup Logic
SHDN Shut-Down Control Output
WKUP Wake-Up Input Input
ICE and JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
JTAGSEL JTAG Selection Input
RTCK Return Test Clock Output
Reset/Test
NRST Microcontroller Reset 110 Low
TST Test Mode Select Input
NTRST Test Reset Signal Input
BMS Boot Mode Select Input
Debug Unit - DBGU
DRXD Debug Receive Data Input
DTXD Debug Transmit Data Output
Advanced Interrupt Controller - AIC
IRQ External Interrupt Input Input
FIQ Fast Interrupt Input Input
PIO Controller - PIOA - PIOB - PIOC - PIOD
PAO-PA31 Parallel 10 Controller A I{e]
PB0-PB18 Parallel 10 Controller B /10
PCO-PC31 Parallel 10 Controller C 110
PDO0-PD21 Parallel 10 Controller D 110

Atmel

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

5

Table 3-1. Signal Description List (Continued)

Signal Name Function Type Active Level
External Bus Interface - EBI
D0-D15 Data Bus I/0
D16-D31 Data Bus IO
AO0-A25 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO0-NCS5 Chip Select Lines Output Low
NWRO-NWR3 Write Signal Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO-NBS3 Byte Mask Signal Output Low
NAND Flash Support
NFDO-NFD16 NAND Flash I/O I/0
NANDCS NAND Flash Chip Select Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
DDR2/SDRAM/LPDDR Controller
SDCK,#SDCK DDR2/SDRAM Differential Clock Output
SDCKE DDR2/SDRAM Clock Enable Output High
SDCS DDR2/SDRAM Controller Chip Select Output Low
BA[0..2] Bank Select Output Low
SDWE DDR2/SDRAM Write Enable Output Low
RAS-CAS Row and Column Signal Output Low
SDA10 SDRAM Address 10 Line Output
DQSJ[0..1] Data Strobe I/0
DQM[0..3] Write Data Mask Output
High Speed MultiMedia Card Interface - HSMCIO-1
MCIO0_CK, MCI1_CK Multimedia Card Clock 110
MCIO_CDA, MCI1_CDA Multimedia Card Slot Command 110
MCI0_DAO-MCIO_DA3 Multimedia Card O Slot A Data I/1O
MCI1_DAO-MCI1_DA3 Multimedia Card 1 Slot A Data I/0
SAM9G15 [DATASHEET] 6

Atmel

11052D-ATARM-31-Oct-12

Table 3-1. Signal Description List (Continued)

Signal Name Function Type Active Level

Universal Synchronous Asynchronous Receiver Transmitter - USARTX

SCKx USARTX Serial Clock I/0
TXDx USARTX Transmit Data Output
RXDx USARTX Receive Data Input
RTSx USARTX Request To Send Output
CTSx USARTx Clear To Send Input
Universal Asynchronous Receiver Transmitter - UARTX

UTXDx UARTX Transmit Data Output
URXDx UARTX Receive Data Input

Synchronous Serial Controller - SSC

TD SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock le}
RK SSC Receive Clock l[e}
TF SSC Transmit Frame Sync 1/0
RF SSC Receive Frame Sync I/O

Timer/Counter - TCx x=0..5

TCLKx TC Channel x External Clock Input Input
TIOAX TC Channel x 1/0O Line A I/0
TIOBX TC Channel x I/O Line B I/0

Serial Peripheral Interface - SPIx

SPIX_MISO Master In Slave Out I/0
SPIx_MOSI Master Out Slave In I/0
SPIx_SPCK SPI Serial Clock 1/0
SPIx_NPCSO0 SPI Peripheral Chip Select 0 I/0 Low
SPIx_NPCS1-SPIx_NPCS3 SPI Peripheral Chip Select Output Low
Two-Wire Interface -TWIx
TWDx Two-wire Serial Data 110
TWCKX Two-wire Serial Clock I/10

Pulse Width Modulation Controller- PWMC

PWMO0-PWM3 Pulse Width Modulation Output Output

Atmel SAM9G15 [DATASHEET] 7

11052D-ATARM-31-Oct-12

Table 3-1. Signal Description List (Continued)

Signal Name Function Type Active Level

USB Host High Speed Port - UHPHS

HFSDPA USB Host Port A Full Speed Data + Analog
HFSDMA USB Host Port A Full Speed Data - Analog
HHSDPA USB Host Port A High Speed Data + Analog
HHSDMA USB Host Port A High Speed Data - Analog
HFSDPB USB Host Port B Full Speed Data + Analog
HFSDMB USB Host Port B Full Speed Data - Analog
HHSDPB USB Host Port B High Speed Data + Analog
HHSDMB USB Host Port B High Speed Data - Analog
HFSDMC USB Host Port C Full Speed Data - Analog
HFSDPC USB Host Port C Full Speed Data + Analog

USB Device High Speed Port - UDPHS

DFSDM USB Device Full Speed Data - Analog
DFSDP USB Device Full Speed Data + Analog
DHSDM USB Device High Speed Data - Analog
DHSDP USB Device High Speed Data + Analog
LCD Controller - LCDC
LCDDAT 0-23 LCD Data Bus Output
LCDVSYNC LCD Vertical Synchronization Output
LCDHSYNC LCD Horizontal Synchronization Output
LCDPCK LCD Pixel Clock Output
LCDDEN LCD Data Enable Output
LCDPWM LCD Contrast Control Output
LCDDISP LCD Display Enable Output
Analog-to-Digital Converter - ADC

ADOyp . Top/Upper Left Channel Analog
AD1yy ur Bottom/Upper Right Channel Analog
AD2yp || Right/Lower Left Channel Analog
AD3y\ sense Left/Sense Channel Analog
AD4, Lower Right Channel Analog
AD5-AD11 7 Analog Inputs Analog
ADTRG ADC Trigger Input

ADVREF ADC Reference Analog

Soft Modem - SMD

DIBN Soft Modem Signal I/0
DIBP Soft Modem Signal I/10

Atmel SAM9G15 [DATASHEET] 8

11052D-ATARM-31-Oct-12

4, Package and Pinout
The SAM9G15 is available in a 217-ball BGA package.

4.1 Overview of the 217-ball BGA Package
Figure 4-1 shows the orientation of the 217-ball BGA Package.

Figure 4-1. Orientation of the 217-ball BGA Package
TOP VIEW

0000000
6] 000000000000 00000
5] 00000000000000000
14 00000000000000000
13] 0000 0000
12 0000 0000
11 0000 0000
10| ooo0o0 000 0000
9 0000 000 0000
8 0000 co0o 0000
7 0000 0000
6 0000 0000
5 0000 0000
4 000000000000 0000O0
3 000000000000 00000
f 000000000000 00000

.OOOOOOOOOOOOOOOOO

ABCDEFGHJ KLMNPRTU
BALL A1 /

Atmel SAM9G15 [DATASHEET] 9

11052D-ATARM-31-Oct-12

4.2 1/O Description

Table 4-1. SAM9G15 I/O Type Description

1/0 Type Voltage Range Analog Pull-up Pull-down Schmitt Trigger
GPIO 1.65-3.6V switchable switchable switchable
GPIO_CLK 1.65-3.6V switchable switchable switchable
GPIO_CLK2 1.65-3.6V switchable switchable switchable
GPIO_ANA 3.0-3.6V | switchable switchable
EBI 1.65-1.95V, 3.0- switchable switchable
3.6V
EBI_O 1.65-1.95V, 3.0- Reset State Reset State
- 3.6V
EBI_CLK 1.65 13%5\>/ 3.0
RSTJTAG 3.0-3.6V Reset State Reset State Reset State
SYSC 1.65-3.6V Reset State Reset State Reset State
VBG 0.9-1.1v |
USBFS 3.0-3.6V 1/0
USBHS 3.0-3.6V 110
CLOCK 1.65-3.6V 110
DIB 3.0-3.6V 1/0

When “Reset State” is mentioned, the configuration is defined by the “Reset State” column of the Pin Description table.

Table 4-2. SAM9G15 I/O Type Assignment and Frequency

1/0 Frequency | Charge Load Output

1/0 Type (MHz) (pF) Current Signal Name

GPIO 40 10 all PIO lines except the following
GPIO_CLK 54 10 MCIOCK, MCI1CK, SPIOSPCK, SPI1SPCK
GPIO_CLK2 75 10 LCDDOTCK

16mA,
GPIO_ANA 25 10 ADx, GPADx
- 40mA (peak)
50 (3.3V) : .
EBI 133 all Data lines (Input/output) except the following
30 (1.8V)
EBI O 66 50 (3.3V) all Address and control lines (output only) except the
- 30 (1.8V) following
EBI_CLK 133 10 CK, #CK

RSTJTAG 10 10 NRST, NTRST, BMS, TCK, TDI, TMS, TDO, RTCK

SYSC 0.25 10 WKUP, SHDN, JTAGSEL, TST, SHDN

VBG 0.25 10 VBG

HFSDPA, HFSDPB/DFSDP, HFSDPC, HFSDMA,
USBFS 12 10 HFSDMB/DFSDM, HFSDMC
SAM9G15 [DATASHEET] 10
Atmel

11052D-ATARM-31-Oct-12

Table 4-2. SAM9G15 I/O Type Assignment and Frequency (Continued)

1/0 Frequency Charge Load Output
I/0 Type (MHz) (pF) Current Signal Name
HHSDPA, HHSDPB/DHSDP, HHSDMA,
USBHS 480 10 HHSDMB/DHSDM
CLOCK 50 50 XIN, XOUT, XIN32, XOUT32
DIB 25 25 DIBN, DIBP

4.2.1 Reset State

In the tables that follow, the column “Reset State” indicates the reset state of the line with mnemonics.
e “PIO"“/" signal
Indicates whether the P1O Line resets in I/O mode or in peripheral mode. If “PIO” is mentioned, the PIO Line is

maintained in a static state as soon as the reset is released. As a result, the bit corresponding to the PIO Line in the
register PIO_PSR (Peripheral Status Register) resets low.

If a sighal name is mentioned in the “Reset State” column, the PIO Line is assigned to this function and the
corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories, in particular the address lines,
which require the pin to be driven as soon as the reset is released.

e ‘"0

Indicates whether the signal is input or output state.
e “PU""PD”

Indicates whether Pull-Up, Pull-Down or nothing is enabled.
e “ST”

Indicates if Schmitt Trigger is enabled.

Note: Example: The PB18 “Reset State” column shows “PIO, I, PU, ST". That means the line PIO18 is configured as
an Input with Pull-Up and Schmitt Trigger enabled. PD14 reset state is “PIO, |, PU". That means PIO Input with
Pull-Up. PD15 reset state is “A20, O, PD” which means output address line 20 with Pull-Down.

Atmel SAM9G15 [DATASHEET] 11

11052D-ATARM-31-Oct-12

4.3 217-ball BGA Package Pinout

Table 4-3. Pin Description BGA217

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State

Signal, Dir,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir | PU, PD, ST
L3 VDDIOPO GPIO PAO 110 TXDO (6] SPI1_NPCS1 O PIO, I, PU, ST
P1 VDDIOPO GPIO PAL 110 RXDO | SPIO_NPCS2 O PIO, I, PU, ST
L4 VDDIOPO GPIO PA2 110 RTSO (e} MCI1_DA1 110 PIO, I, PU, ST
N4 VDDIOPO GPIO PA3 110 CTSO | MCI1_DA2 110 PIO, I, PU, ST
T3 VDDIOPO GPIO PA4 110 SCKO 110 MCI1_DA3 110 PIO, I, PU, ST
R1 VDDIOPO GPIO PA5 110 TXD1 o PIO, I, PU, ST
R4 VDDIOPO GPIO PA6 110 RXD1 | PIO, I, PU, ST
R3 VDDIOPO GPIO PA7 110 TXD2 (0] SPIO_NPCS1 O PIO, I, PU, ST
P4 VDDIOPO GPIO PA8 110 RXD2 | SPI1_NPCSO | /O PIO, I, PU, ST
u3 VDDIOPO GPIO PA9 110 DRXD | PIO, I, PU, ST
T1 VDDIOPO GPIO PA10 110 DTXD (o] PIO, I, PU, ST
U1 VDDIOPO GPIO PA11 110 SPIO_MISO 110 MCI1_DAO 110 PIO, I, PU, ST
T2 VDDIOPO GPIO PA12 110 SPI0_MOSI 1/0 MCI1_CDA 110 PIO, I, PU, ST
T4 VDDIOPO GPIO_CLK PA13 110 SPI0O_SPCK 110 MCI1_CK 110 PIO, I, PU, ST
u2 VDDIOPO GPIO PA14 110 SPIO_NPCSO | I/0 PIO, I, PU, ST
u4 VDDIOPO GPIO PA15 110 MCI0_DAO 110 PIO, I, PU, ST
P5 VDDIOPO GPIO PA16 110 MCIO_CDA 110 PIO, I, PU, ST
R5 VDDIOPO GPIO_CLK PA17 110 MCIO_CK 110 PIO, I, PU, ST
us VDDIOPO GPIO PA18 110 MCI0_DA1 110 PIO, I, PU, ST
T5 VDDIOPO GPIO PA19 110 MCIO_DA2 110 PIO, I, PU, ST
u6 VDDIOPO GPIO PA20 110 MCIO_DA3 110 PIO, I, PU, ST
T6 VDDIOPO GPIO PA21 110 TIOAO /0 SPI1_MISO 110 PIO, I, PU, ST
R6 VDDIOPO GPIO PA22 110 TIOA1 /10 SPI1_MOSI 110 PIO, I, PU, ST
u7 VDDIOPO GPIO_CLK PA23 110 TIOA2 /0 | SPI1_SPCK 110 PIO, I, PU, ST
T7 VDDIOPO GPIO PA24 110 TCLKO | TK /10 PIO, I, PU, ST
T8 VDDIOPO GPIO PA25 110 TCLK1 | TF 110 PIO, I, PU, ST
R7 VDDIOPO GPIO PA26 110 TCLK2 | D (o} PIO, I, PU, ST
P8 VDDIOPO GPIO PA27 110 TIOBO /10 RD | PIO, I, PU, ST
us VDDIOPO GPIO PA28 110 TIOB1 /10 RK 110 PIO, I, PU, ST
R9 VDDIOPO GPIO PA29 110 TIOB2 110 RF 110 PIO, I, PU, ST
R8 VDDIOPO GPIO PA30 110 TWDO /0 | SPI1_NPCS3 O PIO, I, PU, ST
U9 VDDIOPO GPIO PA31 110 TWCKO O SPI1_NPCS2 o PIO, I, PU, ST
D3 VDDANA GPIO PBO 110 RTS2 o PIO, I, PU, ST
D4 VDDANA GPIO PB1 110 CTS2 | PIO, I, PU, ST
D2 VDDANA GPIO PB2 110 SCK2 110 PIO, I, PU, ST
E4 VDDANA GPIO PB3 110 SPIO_NPCS3 (o} PIO, I, PU, ST
D1 VDDANA GPIO_CLK PB4 110 TWD2 /10 PIO, I, PU, ST
E3 VDDANA GPIO PB5 110 TWCK2 o PIO, I, PU, ST
B3 VDDANA GPIO_ANA PB6 110 AD7 | PIO, I, PU, ST
AtmeL SAM9G15 [DATASHEET] 12

11052D-ATARM-31-Oct-12

Table 4-3.

Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State

Signal, Dir,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir | PU, PD, ST
Cc2 VDDANA GPIO_ANA PB7 110 AD8 | PIO, I, PU, ST
C5 VDDANA GPIO_ANA PB8 110 AD9 | PIO, I, PU, ST
C1 VDDANA GPIO_ANA PB9 110 AD10 | PCK1 o PIO, I, PU, ST
B2 VDDANA GPIO_ANA PB10 110 AD11 | PCKO (6] PIO, I, PU, ST
A3 VDDANA GPIO_ANA PB11 110 ADO | PWMO O PIO, I, PU, ST
B4 VDDANA GPIO_ANA PB12 110 AD1 [PWM1 (¢} PIO, I, PU, ST
A2 VDDANA GPIO_ANA PB13 110 AD2 | PWM2 O PIO, I, PU, ST
C4 VDDANA GPIO_ANA PB14 110 AD3 | PWM3 (@) PIO, I, PU, ST
Cc3 VDDANA GPIO_ANA PB15 110 AD4 [PIO, I, PU, ST
Al VDDANA GPIO_ANA PB16 110 AD5 | | PIO, I, PU, ST
Bl VDDANA GPIO_ANA PB17 110 AD6 | | PIO, I, PU, ST
D5 VDDANA GPIO PB18 110 IRQ | ADTRG | PIO, I, PU, ST
E2 VDDIOP1 GPIO PCO 110 LCDDATO (e} TWD1 1/10 | PIO, I, PU, ST
F4 VDDIOP1 GPIO PC1 110 LCDDAT1 O TWCK1 O |PIO, I, PU, ST
F3 VDDIOP1 GPIO PC2 110 LCDDAT2 O TIOA3 /0 | PIO, I, PU, ST
H2 VDDIOP1 GPIO PC3 110 LCDDAT3 (e} TIOB3 /10 | PIO, I, PU, ST
E1l VDDIOP1 GPIO PC4 110 LCDDAT4 O TCLK3 | PIO, I, PU, ST
G4 VDDIOP1 GPIO PC5 110 LCDDAT5 O TIOA4 /0 | PIO, I, PU, ST
F2 VDDIOP1 GPIO PC6 110 LCDDAT6 (e} TIOB4 /10 | PIO, I, PU, ST
F1 VDDIOP1 GPIO PC7 110 LCDDAT7 O TCLK4 | PIO, I, PU, ST
G1 VDDIOP1 GPIO PcC8 110 LCDDATS8 O UTXDO O |PIO, I, PU, ST
G3 VDDIOP1 GPIO PC9 110 LCDDAT9 (e} URXDO | PIO, I, PU, ST
G2 VDDIOP1 GPIO PC10 110 LCDDAT10 O PWMO PIO, I, PU, ST
H3 VDDIOP1 GPIO PC11 110 LCDDAT11 O PWM1 PIO, I, PU, ST
J3 VDDIOP1 GPIO PC12 110 LCDDAT12 (e} TIOAS /10 | PIO, I, PU, ST
L2 VDDIOP1 GPIO PC13 110 LCDDAT13 O TIOBS 110 | PIO, I, PU, ST
H1 VDDIOP1 GPIO PC14 110 LCDDAT14 O TCLK5 I |PIO, I, PU, ST
J2 VDDIOP1 GPIO_CLK PC15 110 LCDDAT15 O PCKO O |PIO, I, PU, ST
J1 VDDIOP1 GPIO PC16 110 LCDDAT16 O UTXD1 O |PIO, I, PU, ST
L1 VDDIOP1 GPIO PC17 110 LCDDAT17 O URXD1 I |PIO, I, PU, ST
K2 VDDIOP1 GPIO PC18 110 LCDDAT18 O PWMO O |PIO, I, PU, ST
N3 VDDIOP1 GPIO PC19 110 LCDDAT19 O PWM1 O |PIO, |, PU, ST
K1 VDDIOP1 GPIO PC20 110 LCDDAT20 O PWM2 O |PIO, I, PU, ST
M3 VDDIOP1 GPIO PC21 110 LCDDAT21 (e} PWM3 O |PIO, I, PU, ST
P3 VDDIOP1 GPIO PC22 110 LCDDAT?22 O PIO, I, PU, ST
J4 VDDIOP1 GPIO PC23 110 LCDDAT23 O PIO, I, PU, ST
K3 VDDIOP1 GPIO PC24 110 LCDDISP O PIO, I, PU, ST
M2 VDDIOP1 GPIO PC25 110 PIO, I, PU, ST
P2 VDDIOP1 GPIO PC26 110 LCDPWM O PIO, I, PU, ST
M1 VDDIOP1 GPIO PC27 110 LCDVSYNC O RTS1 O |PIO, I, PU, ST
K4 VDDIOP1 GPIO PC28 110 LCDHSYNC O CTS1 | PIO, I, PU, ST

Atmel

SAM9G15 [DATASHEET] 13

11052D-ATARM-31-Oct-12

Table 4-3. Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir,
Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir | PU, PD, ST
N1 VDDIOP1 GPIO_CLK PC29 110 LCDDEN (e} SCK1 110 | PIO, I, PU, ST
R2 VDDIOP1 GPIO_CLK2 PC30 110 LCDPCK O PIO, I, PU, ST
N2 VDDIOP1 GPIO PC31 110 FIQ | PCK1 O |PIO, I, PU, ST
P13 VDDNF EBI PDO 1/0 NANDOE (6] PIO, I, PU
R14 VDDNF EBI PD1 110 NANDWE (0] PIO, I, PU
R13 VDDNF EBI PD2 110 A21/NANDALE | O A21,0, PD
P15 VDDNF EBI PD3 110 A22/NANDCLE | O A22,0, PD
P12 VDDNF EBI PD4 110 NCS3 (0] PIO, I, PU
P14 VDDNF EBI PD5 110 NWAIT | PIO, I, PU
N14 VDDNF EBI PD6 110 D16 (6] PIO, I, PU
R15 VDDNF EBI PD7 110 D17 o PIO, I, PU
M14 VDDNF EBI PD8 110 D18 (e} PIO, I, PU
N16 VDDNF EBI PD9 110 D19 (6] PIO, I, PU
N17 VDDNF EBI PD10 110 D20 (0] PIO, I, PU
N15 VDDNF EBI PD11 110 D21 (e} PIO, I, PU
K15 VDDNF EBI PD12 110 D22 (6] PIO, I, PU
M15 VDDNF EBI PD13 110 D23 (0] PIO, I, PU
L14 VDDNF EBI PD14 110 D24 (o} PIO, I, PU
M16 VDDNF EBI PD15 110 D25 (6] A20 (6] A20, O, PD
L16 VDDNF EBI PD16 110 D26 (0] A23 (@) A23, O, PD
L15 VDDNF EBI PD17 110 D27 o A24 (¢} A24, 0, PD
K17 VDDNF EBI PD18 110 D28 (6] A25 O A25, O, PD
J17 VDDNF EBI PD19 110 D29 o NCS2 O PIO, I, PU
K16 VDDNF EBI PD20 110 D30 o NCS4 (¢} PIO, I, PU
J16 VDDNF EBI PD21 110 D31 (6] NCS5 (6] PIO, I, PU
D10,
D13, VDDIOM POWER VDDIOM | |
Fl14
JK];L‘L VDDNF POWER VDDNF | |
H9,
'319? GNDIOM GND GNDIOM | |
J10
P7 VDDIOPO POWER VDDIOPO | |
H4 VDDIOP1 POWER VDDIOP1 | |
’\;‘é GNDIOP GND GNDIOP | |
B5 VDDBU POWER VDDBU | |
B6 GNDBU GND GNDBU | |
C6 VDDANA POWER VDDANA | |
D6 GNDANA GND GNDANA | |
R12 VDDPLLA POWER VDDPLLA | |
T13 VDDOSC POWER VDDOSC | |
AtmeL SAM9G15 [DATASHEET] 14

11052D-ATARM-31-Oct-12

Table 4-3.

Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir | PU, PD, ST
u13 GNDOSC GND GNDOSC | |
H14,
K8, VDDCORE POWER VDDCORE | |
K9
H8,
Jg, GNDCORE GND GNDCORE | |
K10
ul16 VDDUTMII POWER VDDUTMII | |
T17 VDDUTMIC POWER VDDUTMIC | |
T16 GNDUTMI GND GNDUTMI I |
D14 VDDIOM EBI DO 110 O, PD
D15 VDDIOM EBI D1 110 O, PD
Al6 VDDIOM EBI D2 110 O, PD
B16 VDDIOM EBI D3 110 O, PD
Al17 VDDIOM EBI D4 110 O, PD
B15 VDDIOM EBI D5 110 O, PD
Cl4 VDDIOM EBI D6 110 O, PD
B14 VDDIOM EBI D7 110 O, PD
Al5 VDDIOM EBI D8 110 O, PD
C15 VDDIOM EBI D9 110 O, PD
D12 VDDIOM EBI D10 110 O, PD
C13 VDDIOM EBI D11 110 O, PD
Al4 VDDIOM EBI D12 110 O, PD
B13 VDDIOM EBI D13 110 O, PD
Al13 VDDIOM EBI D14 110 O, PD
C12 VDDIOM EBI D15 110 O, PD
J15 VDDIOM EBI_O A0 O NBSO o O, PD
H16 VDDIOM EBI_O Al (6] N?S\%BSM (0] O, PD
H15 VDDIOM EBI_O A2 (¢} O, PD
H17 VDDIOM EBI_O A3 (e] O, PD
G17 VDDIOM EBI_O A4 (@) O, PD
G16 VDDIOM EBI_O A5 (¢} O, PD
F17 VDDIOM EBI_O A6 (e] O, PD
E17 VDDIOM EBI_O A7 O O, PD
F16 VDDIOM EBI_O A8 (¢} O, PD
G15 VDDIOM EBI_O A9 O O, PD
G114 VDDIOM EBI_O A10 (¢) O, PD
F15 VDDIOM EBI_O All (¢} O, PD
D17 VDDIOM EBI_O Al12 (e] O, PD
C17 VDDIOM EBI_O A13 (@) O, PD
E16 VDDIOM EBI_O Al4 (¢} O, PD
D16 VDDIOM EBI_O Al5 (e] O, PD

Atmel

SAM9G15 [DATASHEET] 15

11052D-ATARM-31-Oct-12

Table 4-3.

Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir | PU, PD, ST
C16 VDDIOM EBI_O Al6 O BAO O, PD
B17 VDDIOM EBI_O Al7 O BAl O, PD
E15 VDDIOM EBI_O A18 (e} BA2 O, PD
El4 VDDIOM EBI_O Al19 (6] O, PD
B9 VDDIOM EBI_O NCSO (@) O, PU
B8 VDDIOM EBI_O NCs1 (¢} SDCS (e} O, PU
D9 VDDIOM EBI_O NRD O O, PU
C9 VDDIOM EBI_O NWRO O NWRE O, PU
c7 VDDIOM EBI_O NWR1 (¢} NBS1 O, PU
A8 VDDIOM EBI_O NWR3 O | NBS3/DQM3 O, PU
D11 VDDIOM EBI_CLK SDCK O O
Cl1 VDDIOM EBI_CLK #SDCK (¢} o
B12 VDDIOM EBI_O SDCKE o O, PU
B11 VDDIOM EBI_O RAS O O, PU
C10 VDDIOM EBI_O CAS (¢} O, PU
Al12 VDDIOM EBI_O SDWE O O, PU
Cc8 VDDIOM EBI_O SDA10 (@) O, PU
Al0 VDDIOM EBI_O DQMO (¢} O, PU
B10 VDDIOM EBI_O DQM1 O O, PU
All VDDIOM EBI DQSO0 110 O, PD
A9 VDDIOM EBI DQS1 110 O, PD
A4 VDDANA POWER ADVREF | |
U17 | VDDUTMIC VBG VBG | |
T14 | VDDUTMII USBFS HFSDPA 110 DFSDP 110 O, PD
T15 VDDUTMII USBFS HFSDMA 110 DFSDM 1/0 O, PD
u14 VDDUTMII USBHS HHSDPA 110 DHSDP 110 O, PD
Ul5 | VDDUTMII USBHS HHSDMA 110 DHSDM 110 O, PD
R16 VDDUTMII USBFS HFSDPB 110 O, PD
P16 VDDUTMII USBFS HFSDMB 110 O, PD
R17 | VDDUTMII USBHS HHSDPB 110 O, PD
P17 VDDUTMII USBHS HHSDMB 110 O, PD
L17 VDDUTMII USBFS HFSDPC 110 O, PD
M17 | VDDUTMII USBFS HFSDMC 110 O, PD
R11 VDDIOPO DiB DIBN 110 O, PU
P11 VDDIOPO DiB DIBP 110 O, PU
A7 VDDBU SYSC WKUP | I, ST
D8 VDDBU SYSC SHDN O O, PU
P9 VDDIOPO RSTJTAG BMS | I, PD, ST
D7 VDDBU SYSC JTAGSEL | I, PD
B7 VDDBU SYSC TST | I, PD, ST
u10 VDDIOPO RSTJTAG TCK | I, ST

Atmel

SAM9G15 [DATASHEET] 16

11052D-ATARM-31-Oct-12

Table 4-3.

Pin Description BGA217 (Continued)

Primary Alternate PIO Peripheral A PIO Peripheral B PIO Peripheral C Reset State
Signal, Dir,

Ball Power Rail 1/0 Type Signal Dir Signal Dir Signal Dir Signal Dir Signal Dir | PU, PD, ST
T9 VDDIOPO RSTJTAG TDI | I, ST
T10 VDDIOPO RSTJTAG TDO O O
U1l VDDIOPO RSTJITAG T™MS | I, ST
R10 VDDIOPO RSTJTAG RTCK o (e}
P10 VDDIOPO RSTJTAG NRST 110 I, PU, ST
T11 VDDIOPO RSTJITAG NTRST | I, PU, ST
A6 VDDBU CLOCK XIN32 | |
A5 VDDBU CLOCK XOUT32 O O
T12 VDDOSC CLOCK XIN | |
u12 VDDOSC CLOCK XOouT (6] (6]

Atmel

SAM9G15 [DATASHEET] 17

11052D-ATARM-31-Oct-12

5. Power Considerations

5.1 Power Supplies
The SAM9G15 has several types of power supply pins.

Table 5-1. SAM9G15 Power Supplies
Name Voltage Range, nominal Powers Associated
Ground
VDDCORE 0.9-1.1V, 1.0V ARM core, internal memories, internal peripherals and GNDCORE
part of the system controller.
1.65-1.95V, 1.8V .
VDDIOM External Memory Interface I/O lines GNDIOM
3.0-3.6V, 3.3V
1.65-1.95V, 1.8V - i
VDDNE NAND_ Flash 1/0 and control, D16-D32 and multiplexed GNDIOM
3.0-3.6V, 3.3V SMC lines
VDDIOPO 1.65-3.6V a part of Peripheral 1/O lines” GNDIOP
VDDIOP1 1.65-3.6V a part of Peripheral /O lines) GNDIOP
the Slow Clock oscillator, the internal 32 kHz RC
VDDBU 1.65-3.6V oscillator and backup part of the System Controller GNDBU
VDDUTMIC 0.9-1.1v, 1.0V the USB transceiver core logic GNDUTMI
VDDUTMII 3.0-3.6V, 3.3V the USB transceiver interface GNDUTMI
VDDPLLA 0.9-1.1v, 1.0V the PLLA and PLLUTMI cells GNDOSC
VDDOSC 1.65-3.6V the Main Oscillator cells GNDOSC
VDDANA 3.0-3.6V, 3.3V the Analog to Digital Converter GNDANA

Note: 1. Referto Table 4-2 for more details.

Atmel

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

18

6. Memories

Figure 6-1. SAM9G15 Memory Mapping

0x0000 0000

OXOFFF FFFF
0x1000 0000

0x1FFF FFFF
0x2000 0000

0x2FFF FFFF
0x3000 0000

O0x3FFF FFFF
0x4000 0000

OX4FFF FFFF
0x5000 0000

OX5FFF FFFF
0x6000 0000

OX6FFF FFFF
0x7000 0000

OXFEFF FFFF
0xF000 FFFF

OXFFFF FFFF

Atmel

Address Memory Space

Internal Memories

EBI
Chip Select 0

EBI
Chip Select 1
DDR2/LPDDR
SDR/LPSDR

EBI
Chip Select 2

EBI
Chip Select 3
NAND Flash

EBI
Chip Select 4

EBI
Chip Select 5

Undefined
(Abort)

Internal Peripherals

256 MBytes

256 MBytes

256 MBytes

256 MBytes

256 MBytes

256 MBytes

256 MBytes

1,792 MBytes

256 MBytes

0xF000 0000

0xF000 4000

0xF000 8000

0xF000 C000

0xF001 0000

0xF001 4000

0xF800 0000

0xF800 4000

0xF800 8000

0xF800 C000

0xF801 0000

0xF801 4000

0xF801 8000

0xF801 C000

0xF802 0000

0xF802 4000

0xF802 8000

0xF802 C000

0xF803 0000

0xF803 4000

0xF803 8000

0xF803 C000

0xF804 0000

0xF804 4000

0xF804 8000

0xF804 C000

0xF805 0000

OxFFFF C000

——— OXFFFFFFFF

Internal Memory Mapping

0x0000 0000
Boot Memory (1) 1 MByte
Notes: 0x0010 0000
(1) Can be ROM, EBI1_NCSO0 or SRAM ROM 1 MByte
depending on BMS and REMAP -
0x0020 0000 Undetned —
(Abort)
0x0030 0000
SRAM 1 MByte
0x0040 0000
SMD 1 MByte
0x0050 0000
UDPHS RAM 1 MByte
0x0060 0000
; ; UHP OHCI 1 MByte
Peripheral Mapping 0X0070 0000
UHP EHCI 1 MByte
SPIO 0x0080 0000
Undefined
SPH (Abort)
OXOFFF FFFF
HsSMCIo
HSMCI1
ssc)
System Controller Mapping
Erers) OxFFFF C000
Reserved
Reserved
R — OxFFFF DE0O
MATRIX 512 Bytes
OxFFFF E000
TC0,TC1,TC2 X
PMECC 1536 Bytes
1C3,7C4,7C5 OxFFFF E600
PMERRLOC 512 Bytes
Twio OxFFFF E800
DDR2/LPDDR 512 Bytes
OXFFFF EA0O SDR/LPSDR
TWH
SMC 512 Bytes
TwWi2 OxFFFF EC00
DMACO 512 Bytes
USARTO OxFFFF EE00
DMAC1 512 Bytes
USART1 OxFFFF FO00
AIC 512 Bytes
USART2 OXFFFF F200
DBGU 512 Bytes
Reserved OXFFFF F400
PIOA 512 Bytes
EEsarE) OxFFFF F600
PIOB 512 Bytes
Reserved OxFFFF F800
PIOC 512 Bytes
PWMC OxFFFF FAOO
PIOD 512 Bytes
LCDC OxFFFF FC00
PMC 512 Bytes
UDPHS OxFFFF FE0O
RSTC 16 Bytes
OxFFFF FE10
UARTO SHDC 16 Bytes
OxFFFF FE20 3 7
eserve 16 Bytes
UART! OXFFFF FE30
PIT 16 Bytes
OxFFFF FE40
Reserved WDT 16 Bytes
OXFFFF FE50
ADC SCKCR 4 Bytes
OxFFFF FE54
BSCR 12 Bytes
OxFFFF FE60
GPBR 16 Bytes
Reserved OXFFFF FE70
Reserved
OXFFFF FEBO
RTC 16 Bytes
sysc OxFFFF FECO
— OXFFFFFFFF Reserved

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

19

6.1 Memory Mapping

A first level of address decoding is performed by the AHB Bus Matrix, i.e., the implementation of the Advanced High
performance Bus (AHB) for its Master and Slave interfaces with additional features.

Decoding breaks up the 4 Gbytes of address space into 16 banks of 256 Mbytes. Banks 1 to 6 are directed to the EBI
that associates these banks to the external chip selects, EBI_NCSO0 to EBI_NCS5. Bank 0 is reserved for the addressing
of the internal memories, and a second level of decoding provides 1 Mbyte of internal memory area. Bank 15 is reserved
for the peripherals and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master requesting such an
access.

6.2 Embedded Memories

6.2.1 Internal SRAM
The SAM9G15 embeds a total of 32 Kbytes of high-speed SRAM.

After reset and until the Remap Command is performed, the SRAM is only accessible at address 0x0030 0000.
After Remap, the SRAM also becomes available at address 0xO0.

6.2.2 Internal ROM

The SAM9G15 embeds an Internal ROM, which contains the SAM-BA® program.

At any time, the ROM is mapped at address 0x0010 0000. It is also accessible at address 0x0 (BMS = 1) after the reset
and before the Remap Command.

6.3 External Memories

6.3.1 External Bus Interface

e Integrates three External Memory Controllers:
e Static Memory Controller
e DDR2/SDRAM Controller
e MLC Nand Flash ECC Controller

e Additional logic for NAND Flash and CompactFlash®

e Up to 26-bit Address Bus (up to 64MBytes linear per chip select)

e Up to 6 chips selects, Configurable Assignment:
e Static Memory Controller on NCS0, NCS1, NCS2, NCS3, NCS4, NCS5
e DDR2/SDRAM Controller (SDCS) or Static Memory Controller on NCS1
e Optional NAND Flash support on NCS3

6.3.2 Static Memory Controller
e 8-bit, 16-bit, or 32-bit Data Bus
e Multiple Access Modes supported
e Byte Write or Byte Select Lines
e Asynchronous read in Page Mode supported (4- up to 16-byte page size)
e Multiple device adaptability
e Control signals programmable setup, pulse and hold time for each Memory Bank
e Multiple Wait State Management
e Programmable Wait State Generation
e External Wait Request
e Programmable Data Float Time
e Slow Clock mode supported

Atmel SAM9G15 [DATASHEET] 20

11052D-ATARM-31-Oct-12

6.3.3 DDR2SDR Controller
® Supports 4-bank and 8-bank DDR2, LPDDR, SDR and LPSDR
e Numerous Configurations Supported

2K, 4K, 8K, 16K Row Address Memory Parts

SDRAM with 8 Internal Banks

SDR-SDRAM with 32-bit Data Path

DDR2/LPDDR with 16-bit Data Path

One Chip Select for SDRAM Device (256 Mbyte Address Space)

e Programming Facilities
Multibank Ping-pong Access (Up to 8 Banks Opened at Same Time = Reduces Average Latency of

Transactions)

Timing Parameters Specified by Software

Automatic Refresh Operation, Refresh Rate is Programmable
Automatic Update of DS, TCR and PASR Parameters (LPSDR)

e Energy-saving Capabilities

Atmel

Self-refresh, Power-down and Deep Power Modes Supported

SDRAM Power-up Initialization by Software

CAS Latency of 2, 3 Supported

Auto Precharge Command Not Used

SDR-SDRAM with 16-bit Datapath and Eight Columns Not Supported

Clock Frequency Change in Precharge Power-down Mode Not Supported

SAM9G15 [DATASHEET] 21

11052D-ATARM-31-Oct-12

7. System Controller
The System Controller is a set of peripherals that allows handling of key elements of the system, such as power, resets,
clocks, time, interrupts, watchdog, etc.

The System Controller User Interface also embeds the registers that configure the Matrix and a set of registers for the
chip configuration. The chip configuration registers configure the EBI chip select assignment and voltage range for
external memories.

The System Controller’s peripherals are all mapped within the highest 16 KBytes of address space, between addresses
OxFFFF C000 and OxFFFF FFFF.

However, all the registers of System Controller are mapped on the top of the address space. All the registers of the
System Controller can be addressed from a single pointer by using the standard ARM instruction set, as the Load/Store
instruction have an indexing mode of +4 KBytes.

Figure 7-1 on page 23 shows the System Controller block diagram.

Figure 6-1 on page 19 shows the mapping of the User Interface of the System Controller peripherals.

Atmel SAM9G15 [DATASHEET] 22

11052D-ATARM-31-Oct-12

Figure 7-1. SAM9G15 System Controller Block Diagram

NRST

VDDBU

SHDN
WKUP

XIN32
XOUT32

XIN

XOouT

PA0-PA31
PB0-PB18
PCO0-PC31
PDO-PD21

Atmel

System Controller

O

OCd

i

Cccd

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

VDDCORE Powered .
irq nirg
fig Advanced nfiq
S Interrupt
periph_irg[2..30] —— > Controller
ntrst
pit_irg int por_ntrst ARMO926EJ-S
wdt_irq
dbgu_irq proc_nreset
pmc_irq
rstc_irq PCK
MCK ——— Debu | dbgu_ir
periph_nreset ——] Unitg (EJUL Iy debug
dbgu_rxd —— dbgu_txd
MCK ——— Periodic f
debug ——— Interval L pit_irg jtag_nreset Boundary Scan
periph_nreset ——— Timer TAP Controller
(? LbC 5 Watchd MCK
ebug —— latchdog :
idls Timer bS] Bus Matrix
[PiEE s periph_nreset
wdt_fault
WDRPROC
> rstc_irq
VDDCORE F.’tor—mrSt ; —> periph_nreset
POR Jfag_nrese Reset ——> proc_nreset
Controller ——> backup_nreset
UPLLCK
VDDBU VDDBU Powered UHP48M
POR__| sick UHP12M) USB High Speed
SLCK ——— Real-Time > rtc_irq periph_nreset Host Port
backup_nreset ——» Clock ——> rtc_alarm periph_irq23]
SLCK ———
Shut-Down UPLLCK
backup_nreset —> Controller
rtc_alarm —|) USB High Speed
32K RC 4 General-purpose periph_nreset Device Port
0SC Backup Registers periph_irg[22]
SLOW —]
CLOCK
0sC I SCKCR I I BSCR
SLCK |, periph_clk[2..30] SMDCK
int ——>| FL)J(::EL;}\/I periph_nreset SMD
Software Modem
12 MHz MAINC > UHP12M periph_irg[4]
MAIN OSC ——> PCK
Power MCK
Management DDRCK
UPLL upLLck| ~ Controller L | CD Pixel clock
—— pmc_irq
PLLA —— idle
PLLACK > SMDCK = periph_clk[4] periph_clk[5..30]
periph_nreset ——»
periph_nreset
periph_nreset ——] ——> periph_irq[2..3] Embedded
periph_clk[2..3] ——— > —— irq Peripherals
dbgu_rxd ——— > PIO —— fiq periph_irq[5..30]
Controllers L > dbgu_txd
in
out
enable

7.1 Chip Identification
e Chip ID: 0x819A 05A1
e Chip ID Extension: 0
e JTAG ID: 0x05B2_FO3F
e ARM926 TAP ID: 0x0792_603F

7.2 Backup Section

The SAM9G15 features a Backup Section that embeds:
e RC Oscillator

Slow Clock Oscillator

Real Time Counter (RTC)

Shutdown Controller

4 Backup Registers

Slow Clock Control Register (SCKCR)

Boot Sequence Configuration Register (BSCR)

e A part of the reset Controller (RSTC)

This section is powered by the VDDBU rail.

Atmel SAM9G15 [DATASHEET] 24

11052D-ATARM-31-Oct-12

8.1

8.2

Peripherals

Peripheral Mapping

As shown in Figure 6-1, the Peripherals are mapped in the upper 256 Mbytes of the address space between the
addresses 0xF000 0000 and OxFFFF C000.

Each User Peripheral is allocated 16 Kbytes of address space.

Peripheral Identifiers

Table 8-1 defines the Peripheral Identifiers of the SAM9G15. A peripheral identifier is required for the control of the
peripheral interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with the Power
Management Controller.

Table 8-1. Peripheral Identifiers

Instance Instance Instance Description External Wired-OR
ID Name interrupt interrupt
0 AlC Advanced Interrupt Controller FIQ

DBGU, PMC,
System Controller Interrupt g:\(ASE((::C
1 SYS PMERRLOC
2 PIOA,PIOB Parallel I/0O Controller A and B
3 PIOC,PIOD Parallel 1/0 Controller C and D
4 SMD SMD Soft Modem
5 USARTO USART 0
6 USART1 USART 1
7 USART2 USART 2
9 TWIO Two-Wire Interface 0
10 TWIL1 Two-Wire Interface 1
11 TWI2 Two-Wire Interface 2
High Speed Multimedia Card
12 HSMCIO Interface 0
13 SPIO Serial Peripheral Interface 0
14 SPI1 Serial Peripheral Interface 1
15 UARTO UART 0
16 UART1 UART 1
17 TCO,TC1 Timer Counter 0,1,2,3,4,5
Pulse Width Modulation
18 PWM Controller
19 ADC ADC Controller
20 DMACO DMA Controller 0
21 DMAC1 DMA Controller 1
22 UHPHS USB Host High Speed
23 UDPHS USB Device High Speed

Atmel SAM9G15 [DATASHEET] 25

11052D-ATARM-31-Oct-12

Table 8-1. Peripheral Identifiers (Continued)
Instance Instance Instance Description External Wired-OR
ID Name interrupt interrupt
25 LCDC LCD Controller
High Speed Multimedia Card

26 HSMCI1 Interface 1
28 SSC Synchronous Serial Controller
31 AlC Advanced Interrupt Controller IRQ

8.3 Peripheral Signal Multiplexing on 1/O Lines
The SAM9G15 features 4 PIO controllers, PIOA, PIOB, PIOC and PIOD, which multiplex the 1/O lines of the peripheral

set.

Each PIO Controller controls 32 lines, 19 lines, 32 lines and 22 lines respectively for PIOA, PIOB, PIOC and PIOD. Each
line can be assigned to one of three peripheral functions, A, B or C.

Refer to Section 4. “Package and Pinout”, Table 4-3 to see the PIO assignments.

Atmel

SAM9G15 [DATASHEET] 26

11052D-ATARM-31-Oct-12

9. ARM926EJ-S™

9.1 Description

The ARM926EJ-S processor is a member of the ARM9™ family of general-purpose microprocessors. The ARM926EJ-S
implements ARM architecture version 5TEJ and is targeted at multi-tasking applications where full memory
management, high performance, low die size and low power are all important features.

The ARM926EJ-S processor supports the 32-bit ARM and 16-bit THUMB instruction sets, enabling the user to trade off
between high performance and high code density. It also supports 8-bit Java instruction set and includes features for
efficient execution of Java bytecode, providing a Java performance similar to a JIT (Just-In-Time compilers), for the next
generation of Java-powered wireless and embedded devices. It includes an enhanced multiplier design for improved
DSP performance.

The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and
software debug.
The ARM926EJ-S provides a complete high performance processor subsystem, including:

e An ARM9EJ-S™ integer core

e A Memory Management Unit (MMU)

e Separate instruction and data AMBA AHB bus interfaces

9.2 Embedded Characteristics
e ARM9YEJ-S™ Based on ARM® Architecture VSTEJ with Jazelle Technology
e Three Instruction Sets
e ARM® High-performance 32-bit Instruction Set
e Thumb® High Code Density 16-bit Instruction Set
e Jazelle® 8-bit Instruction Set
e 5-Stage Pipeline Architecture when Jazelle is not Used
e Fetch (F)
Decode (D)
Execute (E)
Memory (M)
Writeback (W)
tage Pipeline when Jazelle is Used
Fetch
Jazelle/Decode (Two Cycles)
Execute
Memory
e Writeback
e |Cache and DCache
e Virtually-addressed 4-way Set Associative Caches
8 Words per Line
Critical-word First Cache Refilling
Write-though and Write-back Operation for DCache Only
Pseudo-random or Round-robin Replacement
Cache Lockdown Registers
Cache Maintenance
Write Buffer
e 16-word Data Buffer

e 06-

e 6 o o) o o o

Atmel SAM9G15 [DATASHEET] 27

11052D-ATARM-31-Oct-12

e 4-address Address Buffer
e Software Control Drain
e DCache Write-back Buffer
e 8 Data Word Entries
e One Address Entry
e Software Control Drain
e Memory Management Unit (MMU)
e Access Permission for Sections
e Access Permission for Large Pages and Small Pages
e 16 Embedded Domains
e 64 Entry Instruction TLB and 64 Entry Data TLB
e Memory Access
e 8-, 16-, and 32-bit Data Types
e Separate AMBA AHB Buses for Both the 32-bit Data Interface and the 32-bit Instructions Interface
e Bus Interface Unit
e Arbitrates and Schedules AHB Requests
e Enables Multi-layer AHB to be Implemented
e Increases Overall Bus Bandwidth
e Makes System Architecture Mode Flexible

Atmel SAM9G15 [DATASHEET] 28

11052D-ATARM-31-Oct-12

9.3

Block Diagram

Figure 9-1. ARM926EJ-S Internal Functional Block Diagram

Atmel

External Coprocessors ETM9
CP1§ Syst_em External Trace Port
Configuration Coprocessor
Interface
Coprocessor |« Interface
A
Write Data
[
ARM9YEJ-S
> Processor Core
_> -
r— Instruction
Read Fetches
Data I I
.]
4
— Data Instruction *
Address Address
MMU
\4
\ 4
Instruction
DTCM Data TLB TLB ITCM
Interface Interface
— _
Data TCM Instruction TCM
<
l 1 * Data * { Instruction *
Address Address
AHB Interface :
Data Cache and In%t;li%t;on
Write Buffer

AMBA AHB

SAM9G15 [DATASHEET] 29

11052D-ATARM-31-Oct-12

94 ARM9EJ-S Processor

9.4.1 ARMOYEJ-S Operating States

The ARMYEJ-S processor can operate in three different states, each with a specific instruction set:
e ARM state: 32-bit, word-aligned ARM instructions.
e THUMB state: 16-bit, halfword-aligned Thumb instructions.
e Jazelle state: variable length, byte-aligned Jazelle instructions.

In Jazelle state, all instruction Fetches are in words.

9.4.2 Switching State

The operating state of the ARM9EJ-S core can be switched between:
e ARM state and THUMB state using the BX and BLX instructions, and loads to the PC
e ARM state and Jazelle state using the BXJ instruction

All exceptions are entered, handled and exited in ARM state. If an exception occurs in Thumb or Jazelle states, the
processor reverts to ARM state. The transition back to Thumb or Jazelle states occurs automatically on return from the
exception handler.

9.4.3 Instruction Pipelines
The ARM9EJ-S core uses two kinds of pipelines to increase the speed of the flow of instructions to the processor.

A five-stage (five clock cycles) pipeline is used for ARM and Thumb states. It consists of Fetch, Decode, Execute,
Memory and Writeback stages.

A six-stage (six clock cycles) pipeline is used for Jazelle state It consists of Fetch, Jazelle/Decode (two clock cycles),
Execute, Memory and Writeback stages.

9.4.4 Memory Access

The ARM9EJ-S core supports byte (8-bit), half-word (16-bit) and word (32-bit) access. Words must be aligned to four-
byte boundaries, half-words must be aligned to two-byte boundaries and bytes can be placed on any byte boundary.

Because of the nature of the pipelines, it is possible for a value to be required for use before it has been placed in the
register bank by the actions of an earlier instruction. The ARM9EJ-S control logic automatically detects these cases and
stalls the core or forward data.

9.4.5 Jazelle Technology

The Jazelle technology enables direct and efficient execution of Java byte codes on ARM processors, providing high
performance for the next generation of Java-powered wireless and embedded devices.

The new Java feature of ARM9EJ-S can be described as a hardware emulation of a JVM (Java Virtual Machine). Java
mode will appear as another state: instead of executing ARM or Thumb instructions, it executes Java byte codes. The
Java byte code decoder logic implemented in ARM9EJ-S decodes 95% of executed byte codes and turns them into ARM
instructions without any overhead, while less frequently used byte codes are broken down into optimized sequences of
ARM instructions. The hardware/software split is invisible to the programmer, invisible to the application and invisible to
the operating system. All existing ARM registers are re-used in Jazelle state and all registers then have particular
functions in this mode.

Minimum interrupt latency is maintained across both ARM state and Java state. Since byte codes execution can be
restarted, an interrupt automatically triggers the core to switch from Java state to ARM state for the execution of the
interrupt handler. This means that no special provision has to be made for handling interrupts while executing byte
codes, whether in hardware or in software.

Atmel SAM9G15 [DATASHEET] 30

11052D-ATARM-31-Oct-12

9.4.6 ARMO9EJ-S Operating Modes

In all states, there are seven operation modes:
User mode is the usual ARM program execution state. It is used for executing most application programs

process

Fast Interrupt (FIQ) mode is used for handling fast interrupts. It is suitable for high-speed data transfer or channel

Interrupt (IRQ) mode is used for general-purpose interrupt handling
Supervisor mode is a protected mode for the operating system

Abort mode is entered after a data or instruction prefetch abort

System mode is a privileged user mode for the operating system

Undefined mode is entered when an undefined instruction exception occurs

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs execute in User Mode. The non-user modes, known as privileged modes, are
entered in order to service interrupts or exceptions or to access protected resources.

9.4.7 ARM9EJ-S Registers

The ARM9EJ-S core has a total of 37 registers.
e 31 general-purpose 32-bit registers
® 6 32-bit status registers

Table 9-1 shows all the registers in all modes.

Table 9-1. ARM9TDMI Modes and Registers Layout

User and System Mode | Supervisor Mode Abort Mode Undefined Mode Interrupt Mode Fast Interrupt Mode
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_FIQ
R9 R9 R9 R9 R9 R9_FIQ
R10 R10 R10 R10 R10 R10_FIQ
R11 R11 R11 R11 R11 R11 FIQ
R12 R12 R12 R12 R12 R12_FIQ
R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ
R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ
PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

Atmel

SAM9G15 [DATASHEET] 31

11052D-ATARM-31-Oct-12

Table 9-1. ARMO9TDMI Modes and Registers Layout (Continued)

User and System Mode | Supervisor Mode Abort Mode Undefined Mode Interrupt Mode Fast Interrupt Mode

SPSR_ABO
RT

SPSR_SVC SPSR_UNDEF SPSR_IRQ SPSR_FIQ

Mode-specific banked registers

The ARM state register set contains 16 directly-accessible registers, r0 to r15, and an additional register, the Current
Program Status Register (CPSR). Registers r0 to r13 are general-purpose registers used to hold either data or address
values. Register r14 is used as a Link register that holds a value (return address) of r15 when BL or BLX is executed.
Register r15 is used as a program counter (PC), whereas the Current Program Status Register (CPSR) contains
condition code flags and the current mode bits.

In privileged modes (FIQ, Supervisor, Abort, IRQ, Undefined), mode-specific banked registers (r8 to r14 in FIQ mode or
r13 to r14 in the other modes) become available. The corresponding banked registers r14_fiq, r14_svc, rl4_abt, r14 irq,
rl4_und are similarly used to hold the values (return address for each mode) of r15 (PC) when interrupts and exceptions
arise, or when BL or BLX instructions are executed within interrupt or exception routines. There is another register called
Saved Program Status Register (SPSR) that becomes available in privileged modes instead of CPSR. This register
contains condition code flags and the current mode bits saved as a result of the exception that caused entry to the
current (privileged) mode.

In all modes and due to a software agreement, register r13 is used as stack pointer.
The use and the function of all the registers described above should obey ARM Procedure Call Standard (APCS) which
defines:
e Constraints on the use of registers
e Stack conventions
e Argument passing and result return
For more details, refer to ARM Software Development Kit.
The Thumb state register set is a subset of the ARM state set. The programmer has direct access to:
e Eight general-purpose registers r0-r7
e Stack pointer, SP
e Link register, LR (ARM r14)
e PC
e CPSR

There are banked registers SPs, LRs and SPSRs for each privileged mode (for more details see the ARM9EJ-S
Technical Reference Manual, revision rlp2 page 2-12).

9.4.7.1 Status Registers
The ARM9EJ-S core contains one CPSR, and five SPSRs for exception handlers to use. The program status registers:
e Hold information about the most recently performed ALU operation

e Control the enabling and disabling of interrupts
e Set the processor operation mode

Atmel SAM9G15 [DATASHEET] 32

11052D-ATARM-31-Oct-12

Figure 9-2. Status Register Format

3130292827 24 765 0

Nfz|C|V|Q J Reserved I |F|T Mode

J |_ |
Jazelle state bit
| Reserved Mode bits

Sticky Overflow

Overflow Thumb state bit
Carry/Borrow/Extend

Zero FIQ disable
Negative/Less than

IRQ disable

Figure 9-2 shows the status register format, where:
e N: Negative, Z: Zero, C: Carry, and V: Overflow are the four ALU flags

e The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic instructions like QADD,
QDADD, QSUB, QDSUB, SMLAxy, and SMLAWY needed to achieve DSP operations.
The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by an MSR instruction
writing to the CPSR. Instructions cannot execute conditionally on the status of the Q flag.

e The J bitin the CPSR indicates when the ARM9EJ-S core is in Jazelle state, where:
e J=0: The processor is in ARM or Thumb state, depending on the T bit
e J=1:The processor is in Jazelle state.

e Mode: five bits to encode the current processor mode

9.4.7.2 Exceptions
Exception Types and Priorities

The ARM9EJ-S supports five types of exceptions. Each type drives the ARM9EJ-S in a privileged mode. The types of
exceptions are:
e Fastinterrupt (FIQ)
e Normal interrupt (IRQ)
e Data and Prefetched aborts (Abort)
e Undefined instruction (Undefined)
e Software interrupt and Reset (Supervisor)
When an exception occurs, the banked version of R14 and the SPSR for the exception mode are used to save the state.
More than one exception can happen at a time, therefore the ARM9OEJ-S takes the arisen exceptions according to the
following priority order:
e Reset (highest priority)
Data Abort
FIQ
IRQ
Prefetch Abort
e BKPT, Undefined instruction, and Software Interrupt (SWI) (Lowest priority)

The BKPT, or Undefined instruction, and SWI exceptions are mutually exclusive.

Note that there is one exception in the priority scheme: when FIQs are enabled and a Data Abort occurs at the same time
as an FIQ, the ARM9EJ-S core enters the Data Abort handler, and proceeds immediately to FIQ vector. A normal return
from the FIQ causes the Data Abort handler to resume execution. Data Aborts must have higher priority than FIQs to
ensure that the transfer error does not escape detection.

Exception Modes and Handling

Exceptions arise whenever the normal flow of a program must be halted temporarily, for example, to service an interrupt
from a peripheral.

Atmel SAM9G15 [DATASHEET] 33

11052D-ATARM-31-Oct-12

When handling an ARM exception, the ARM9EJ-S core performs the following operations:

1.

2.
3.
4,

Preserves the address of the next instruction in the appropriate Link Register that corresponds to the new mode
that has been entered. When the exception entry is from:

e ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction into LR (current PC(r15)
+ 4 or PC + 8 depending on the exception).

e THUMB state, the ARM9EJ-S writes the value of the PC into LR, offset by a value (current PC + 2, PC + 4
or PC + 8 depending on the exception) that causes the program to resume from the correct place on return.

Copies the CPSR into the appropriate SPSR.
Forces the CPSR mode bits to a value that depends on the exception.
Forces the PC to fetch the next instruction from the relevant exception vector.

The register r13 is also banked across exception modes to provide each exception handler with private stack pointer.

The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions.

When an exception has completed, the exception handler must move both the return value in the banked LR minus an
offset to the PC and the SPSR to the CPSR. The offset value varies according to the type of exception. This action
restores both PC and the CPSR.

The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or remove the requirement for
register saving which minimizes the overhead of context switching.

The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be completed. When a
Prefetch Abort occurs, the ARM9OEJ-S marks the prefetched instruction as invalid, but does not take the exception until
the instruction reaches the Execute stage in the pipeline. If the instruction is not executed, for example because a branch
occurs while it is in the pipeline, the abort does not take place.

The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the problem of the Prefetch
Abort. A breakpoint instruction operates as though the instruction caused a Prefetch Abort.

A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until the instruction reaches
the Execute stage of the pipeline. If the instruction is not executed, for example because a branch occurs while it is in the
pipeline, the breakpoint does not take place.

9.4.8 ARM Instruction Set Overview

The ARM instruction set is divided into:

Branch instructions

Data processing instructions
Status register transfer instructions
Load and Store instructions
Coprocessor instructions
Exception-generating instructions

ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition code field (bits[31:28]).

For further details, see the ARM Technical Reference Manual.

Table 9-2 gives the ARM instruction mnemonic list.

Table 9-2. ARM Instruction Mnemonic List
Mnemonic Operation Mnemonic Operation

MOV Move MVN Move Not
ADD Add ADC Add with Carry
SUB Subtract SBC Subtract with Carry
RSB Reverse Subtract RSC Reverse Subtract with Carry
CMP Compare CMN Compare Negated
TST Test TEQ Test Equivalence

Atmel

SAM9G15 [DATASHEET] 34

11052D-ATARM-31-Oct-12

Table 9-2. ARM Instruction Mnemonic List (Continued)
Mnemonic Operation
AND Logical AND
EOR Logical Exclusive OR
MUL Multiply
SMULL Sign Long Multiply
MSR Move to Status Register
B Branch
BX Branch and Exchange
LDR Load Word
LDRSH Load Signed Halfword
LDRSB Load Signed Byte
LDRH Load Half Word
LDRB Load Byte
LDRBT _Il__cr)::s:?izgi:ter Byte with
LoRr | foad Regter
LDM Load Multiple
SWP Swap Word
MCR Move To Coprocessor
LDC Load To Coprocessor
cDP Coproce_ssor Data
Processing

9.49 New ARM Instruction Set

Table 9-3. New ARM Instruction Mnemonic List
Mnemonic Operation
BXJ Branch and exchange to
Java
BLX W Branch, Link and exchange
Signed Multiply Accumulate
SMLAXY 1 16+ 16 bit
SMLAL Signed Multiply Accumulate
Long
Signed Multiply Accumulate
SMLAWY 1 35+ 16 bit
SMULxy Signed Multiply 16 * 16 bit
SMULWy Signed Multiply 32 * 16 bit
QADD Saturated Add

Mnemonic Operation
BIC Bit Clear
ORR Logical (inclusive) OR
MLA Multiply Accumulate
UMULL Unsigned Long Multiply
UMLAL Unsigned Long Multiply
Accumulate
MRS Move From Status Register
BL Branch and Link
SWI Software Interrupt
STR Store Word
STRH Store Half Word
STRB Store Byte
STRBT Store Rgglster Byte with
Translation
STRT Store Rgglster with
Translation
STM Store Multiple
SWPB Swap Byte
MRC Move From Coprocessor
STC Store From Coprocessor
Mnemonic Operation
MRRC Move double from
coprocessor
MCR2 Alternative move of ARM reg
to coprocessor
MCRR Move double to coprocessor
cDP2 Alternative qurocessor
Data Processing
BKPT Breakpoint
Soft Preload, Memory
PLD
prepare to load from address
STRD Store Double
STC2 Alternative Store from

Coprocessor

Atmel

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

35

Table 9-3. New ARM Instruction Mnemonic List (Continued)

Mnemonic Operation Mnemonic Operation
QDADD Saturated Add with Double LDRD Load Double
QSuB Saturated subtract LDC2 Alternative Load to
Coprocessor
QDSUB S:;Lglited Subtract with CLz Count Leading Zeroes

Notes: 1. A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles.

9.4.10 Thumb Instruction Set Overview

The Thumb instruction set is a re-encoded subset of the ARM instruction set.
The Thumb instruction set is divided into:
e Branch instructions
e Data processing instructions
e Load and Store instructions
e Load and Store multiple instructions
e Exception-generating instruction
For further details, see the ARM Technical Reference Manual.
Table 9-4 gives the Thumb instruction mnemonic list.

Table 9-4. Thumb Instruction Mnemonic List

Mnemonic | Operation Mnemonic | Operation

MOV Move MVN Move Not

ADD Add ADC Add with Carry

SuUB Subtract SBC Subtract with Carry
CMP Compare CMN Compare Negated

TST Test NEG Negate

AND Logical AND BIC Bit Clear

EOR Logical Exclusive OR ORR Logical (inclusive) OR
LSL Logical Shift Left LSR Logical Shift Right

ASR Arithmetic Shift Right ROR Rotate Right

MUL Multiply BLX Branch, Link, and Exchange
B Branch BL Branch and Link

BX Branch and Exchange SWI Software Interrupt

LDR Load Word STR Store Word

LDRH Load Half Word STRH Store Half Word

LDRB Load Byte STRB Store Byte

LDRSH Load Signed Halfword LDRSB Load Signed Byte
LDMIA Load Multiple STMIA Store Multiple

PUSH Push Register to stack POP Pop Register from stack
BCC Conditional Branch BKPT Breakpoint

9.5 CP15 Coprocessor

Coprocessor 15, or System Control Coprocessor CP15, is used to configure and control all the items in the list below:

e ARMO9EJ-S
e Caches (ICache, DCache and write buffer)
e TCM
SAM9G15 [DATASHEET 36
Atmel ;]

11052D-ATARM-31-Oct-12

MMU

e Other system options
To control these features, CP15 provides 16 additional registers. See Table 9-5.

Table 9-5. CP15 Registers
Register Name Read/Write
0 ID Code™® Read/Unpredictable
0 Cache type®™ Read/Unpredictable
0 TCM status™ Read/Unpredictable
1 Control Read/write
2 Translation Table Base Read/write
3 Domain Access Control Read/write
4 Reserved None
5 Data fault Status™ Read/write
5 Instruction fault status™) Read/write
6 Fault Address Read/write
7 Cache Operations Read/Write
8 TLB operations Unpredictable/Write
9 cache lockdown® Read/write
9 TCM region Read/write
10 TLB lockdown Read/write
11 Reserved None
12 Reserved None
13 FCSE PID™" Read/write
13 Context ID® Read/Write
14 Reserved None
15 Test configuration Read/Write
Notes: 1. Register locations 0,5, and 13 each provide access to more than one register. The register accessed
depends on the value of the opcode_2 field.
2. Register location 9 provides access to more than one register. The register accessed depends on the value

Atmel

of the CRm field.

SAM9G15 [DATASHEET] 37

11052D-ATARM-31-Oct-12

9.5.1 CP15 Registers Access

CP15 registers can only be accessed in privileged mode by:
e MCR (Move to Coprocessor from ARM Register) instruction is used to write an ARM register to CP15.
e MRC (Move to ARM Register from Coprocessor) instruction is used to read the value of CP15 to an ARM register.

Other instructions like CDP, LDC, STC can cause an undefined instruction exception.

The assembler code for these instructions is:
MCR/ MRC{ cond} p1l5, opcode_1, Rd, CRn, CRm opcode_2.

The MCR, MRC instructions bit pattern is shown below:

31 30 29 28 27 26 25 24

| cond | 1 1 | 1 0 |
23 22 21 20 19 18 17 16

| opcode_1 L | CRn |
15 14 13 12 11 10 9 8

| Rd | 1 1 | 1 1 |
7 6 5 4 3 2 1 0

| opcode_2 | 1 | CRm |

* CRm[3:0]: Specified Coprocessor Action

Determines specific coprocessor action. Its value is dependent on the CP15 register used. For details, refer to CP15 specific reg-
ister behavior.

e opcode_2[7:5]

Determines specific coprocessor operation code. By default, set to 0.

* Rd[15:12]: ARM Register
Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.

* CRnN[19:16]: Coprocessor Register
Determines the destination coprocessor register.

e L: Instruction Bit
0 = MCR instruction
1 = MRC instruction

» opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is c¢15 for CP15.

» cond [31:28]: Condition
For more details, see Chapter 2 in ARM926EJ-S TRM.

Atmel SAM9G15 [DATASHEET] 38

11052D-ATARM-31-Oct-12

9.6 Memory Management Unit (MMU)

The ARM926EJ-S processor implements an enhanced ARM architecture v5 MMU to provide virtual memory features
required by operating systems like Symbian OS, WindowsCE, and Linux. These virtual memory features are memory
access permission controls and virtual to physical address translations.

The Virtual Address generated by the CPU core is converted to a Modified Virtual Address (MVA) by the FCSE (Fast
Context Switch Extension) using the value in CP15 registerl3. The MMU translates modified virtual addresses to
physical addresses by using a single, two-level page table set stored in physical memory. Each entry in the set contains
the access permissions and the physical address that correspond to the virtual address.

The first level translation tables contain 4096 entries indexed by bits [31:20] of the MVA. These entries contain a pointer
to either a 1 MB section of physical memory along with attribute information (access permissions, domain, etc.) or an
entry in the second level translation tables; coarse table and fine table.

The second level translation tables contain two subtables, coarse table and fine table. An entry in the coarse table
contains a pointer to both large pages and small pages along with access permissions. An entry in the fine table contains
a pointer to large, small and tiny pages.

Table 7 shows the different attributes of each page in the physical memory.

Table 9-6. Mapping Details
Mapping Name Mapping Size Access Permission By Subpage Size
Section 1M byte Section -
Large Page 64K bytes 4 separated subpages 16K bytes
Small Page 4K bytes 4 separated subpages 1K byte
Tiny Page 1K byte Tiny Page -

The MMU consists of:
e Access control logic
e Translation Look-aside Buffer (TLB)
e Translation table walk hardware

9.6.1 Access Control Logic

The access control logic controls access information for every entry in the translation table. The access control logic
checks two pieces of access information: domain and access permissions. The domain is the primary access control
mechanism for a memory region; there are 16 of them. It defines the conditions necessary for an access to proceed. The
domain determines whether the access permissions are used to qualify the access or whether they should be ignored.

The second access control mechanism is access permissions that are defined for sections and for large, small and tiny
pages. Sections and tiny pages have a single set of access permissions whereas large and small pages can be
associated with 4 sets of access permissions, one for each subpage (quarter of a page).

9.6.2 Translation Look-aside Buffer (TLB)

The Translation Look-aside Buffer (TLB) caches translated entries and thus avoids going through the translation process
every time. When the TLB contains an entry for the MVA (Modified Virtual Address), the access control logic determines
if the access is permitted and outputs the appropriate physical address corresponding to the MVA. If access is not
permitted, the MMU signals the CPU core to abort.

If the TLB does not contain an entry for the MVA, the translation table walk hardware is invoked to retrieve the translation
information from the translation table in physical memory.

9.6.3 Translation Table Walk Hardware

The translation table walk hardware is a logic that traverses the translation tables located in physical memory, gets the
physical address and access permissions and updates the TLB.

SAM9G15 [DATASHEET] 39

11052D-ATARM-31-Oct-12

Atmel

The number of stages in the hardware table walking is one or two depending whether the address is marked as a
section-mapped access or a page-mapped access.

There are three sizes of page-mapped accesses and one size of section-mapped access. Page-mapped accesses are
for large pages, small pages and tiny pages. The translation process always begins with a level one fetch. A section-
mapped access requires only a level one fetch, but a page-mapped access requires an additional level two fetch. For
further details on the MMU, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual.

9.6.4 MMU Faults

The MMU generates an abort on the following types of faults:

e Alignment faults (for data accesses only)

e Translation faults

e Domain faults

e Permission faults
The access control mechanism of the MMU detects the conditions that produce these faults. If the fault is a result of
memory access, the MMU aborts the access and signals the fault to the CPU core.The MMU retains status and address
information about faults generated by the data accesses in the data fault status register and fault address register. It also
retains the status of faults generated by instruction fetches in the instruction fault status register.

The fault status register (register 5 in CP15) indicates the cause of a data or prefetch abort, and the domain number of
the aborted access when it happens. The fault address register (register 6 in CP15) holds the MVA associated with the
access that caused the Data Abort. For further details on MMU faults, please refer to chapter 3 in ARM926EJ-S
Technical Reference Manual.

9.7 Caches and Write Buffer

The ARM926EJ-S contains a 16KB Instruction Cache (ICache), a 16KB Data Cache (DCache), and a write buffer.
Although the ICache and DCache share common features, each still has some specific mechanisms.

The caches (ICache and DCache) are four-way set associative, addressed, indexed and tagged using the Modified
Virtual Address (MVA), with a cache line length of eight words with two dirty bits for the DCache. The ICache and
DCache provide mechanisms for cache lockdown, cache pollution control, and line replacement.

A new feature is now supported by ARM926EJ-S caches called allocate on read-miss commonly known as wrapping.
This feature enables the caches to perform critical word first cache refilling. This means that when a request for a word
causes a read-miss, the cache performs an AHB access. Instead of loading the whole line (eight words), the cache loads
the critical word first, so the processor can reach it quickly, and then the remaining words, no matter where the word is
located in the line.

The caches and the write buffer are controlled by the CP15 register 1 (Control), CP15 register 7 (cache operations) and
CP15 register 9 (cache lockdown).

9.7.1 Instruction Cache (ICache)

The ICache caches fetched instructions to be executed by the processor. The ICache can be enabled by writing 1 to | bit
of the CP15 Register 1 and disabled by writing 0 to this same bit.

When the MMU is enabled, all instruction fetches are subject to translation and permission checks. If the MMU is
disabled, all instructions fetches are cachable, no protection checks are made and the physical address is flat-mapped to
the modified virtual address. With the MVA use disabled, context switching incurs ICache cleaning and/or invalidating.

When the ICache is disabled, all instruction fetches appear on external memory (AHB) (see Tables 4-1 and 4-2 in page
4-4 in ARM926EJ-S TRM).

On reset, the ICache entries are invalidated and the ICache is disabled. For best performance, ICache should be
enabled as soon as possible after reset.

Atmel SAM9G15 [DATASHEET] 40

11052D-ATARM-31-Oct-12

9.7.2 Data Cache (DCache) and Write Buffer

ARM926EJ-S includes a DCache and a write buffer to reduce the effect of main memory bandwidth and latency on data
access performance. The operations of DCache and write buffer are closely connected.

9.7.2.1 DCache

The DCache needs the MMU to be enabled. All data accesses are subject to MMU permission and translation checks.
Data accesses that are aborted by the MMU do not cause linefills or data accesses to appear on the AMBA ASB
interface. If the MMU is disabled, all data accesses are noncachable, nonbufferable, with no protection checks, and
appear on the AHB bus. All addresses are flat-mapped, VA = MVA = PA, which incurs DCache cleaning and/or
invalidating every time a context switch occurs.

The DCache stores the Physical Address Tag (PA Tag) from which every line was loaded and uses it when writing
modified lines back to external memory. This means that the MMU is not involved in write-back operations.

Each line (8 words) in the DCache has two dirty bits, one for the first four words and the other one for the second four
words. These bits, if set, mark the associated half-lines as dirty. If the cache line is replaced due to a linefill or a cache
clean operation, the dirty bits are used to decide whether all, half or none is written back to memory.

DCache can be enabled or disabled by writing either 1 or 0 to bit C in register 1 of CP15 (see Tables 4-3 and 4-4 on page
4-5in ARM926EJ-S TRM).

The DCache supports write-through and write-back cache operations, selected by memory region using the C and B bits
in the MMU translation tables.

The DCache contains an eight data word entry, single address entry write-back buffer used to hold write-back data for
cache line eviction or cleaning of dirty cache lines.

The Write Buffer can hold up to 16 words of data and four separate addresses. DCache and Write Buffer operations are
closely connected as their configuration is set in each section by the page descriptor in the MMU translation table.

9.7.2.2 Write Buffer

The ARM926EJ-S contains a write buffer that has a 16-word data buffer and a four- address buffer. The write buffer is
used for all writes to a bufferable region, write-through region and write-back region. It also allows to avoid stalling the
processor when writes to external memory are performed. When a store occurs, data is written to the write buffer at core
speed (high speed). The write buffer then completes the store to external memory at bus speed (typically slower than the
core speed). During this time, the ARM9EJ-S processor can preform other tasks.

DCache and Write Buffer support write-back and write-through memory regions, controlled by C and B bits in each
section and page descriptor within the MMU translation tables.

Write-though Operation
When a cache write hit occurs, the DCache line is updated. The updated data is then written to the write buffer which
transfers it to external memory.

When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in the write buffer which
transfers it to external memory.

Write-back Operation

When a cache write hit occurs, the cache line or half line is marked as dirty, meaning that its contents are not up-to-date
with those in the external memory.

When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in the write buffer which
transfers it to external memory.

Atmel SAM9G15 [DATASHEET] 41

11052D-ATARM-31-Oct-12

9.8 Bus Interface Unit

The ARM926EJ-S features a Bus Interface Unit (BIU) that arbitrates and schedules AHB requests. The BIU implements
a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel access paths between multiple AHB masters
and slaves in a system. This is achieved by using a more complex interconnection matrix and gives the benefit of
increased overall bus bandwidth, and a more flexible system architecture.

The multi-master bus architecture has a number of benefits:

e It allows the development of multi-master systems with an increased bus bandwidth and a flexible architecture.

e Each AHB layer becomes simple because it only has one master, so no arbitration or master-to-slave muxing is
required. AHB layers, implementing AHB-Lite protocol, do not have to support request and grant, nor do they have
to support retry and split transactions.

e The arbitration becomes effective when more than one master wants to access the same slave simultaneously.

9.8.1 Supported Transfers

The ARM926EJ-S processor performs all AHB accesses as single word, bursts of four words, or bursts of eight words.
Any ARM9EJ-S core request that is not 1, 4, 8 words in size is split into packets of these sizes. Note that the Atmel bus is
AHB-Lite protocol compliant, hence it does not support split and retry requests.

Table 9-7 gives an overview of the supported transfers and different kinds of transactions they are used for.

Table 9-7. Supported Transfers

HBurst[2:0] Description
Single transfer of word, half-word, or byte:

e Data write (NCNB, NCB, WT, or WB that has missed in DCache)
SINGLE Single transfer e Dataread (NCNB or NCB)

e NC instruction fetch (prefetched and non-prefetched)

e Page table walk read
INCR4 Four-word incrementing burst E?E!irﬁfiﬁhﬁgwﬁigéck Instruction prefetch, if enabled. Four-word burst NCNB,
INCR8 Eight-word incrementing burst | Full-line cache write-back, eight-word burst NCNB, NCB, WT, or WB write.
WRAP8 Eight-word wrapping burst Cache linefill

9.8.2 Thumb Instruction Fetches

All instructions fetches, regardless of the state of ARM9EJ-S core, are made as 32-bit accesses on the AHB. If the
ARMOEJ-S is in Thumb state, then two instructions can be fetched at a time.

9.8.3 Address Alignment

The ARM926EJ-S BIU performs address alignment checking and aligns AHB addresses to the necessary boundary. 16-
bit accesses are aligned to halfword boundaries, and 32-bit accesses are aligned to word boundaries.

Atmel SAM9G15 [DATASHEET] 42

11052D-ATARM-31-Oct-12

10. Debug and Test

10.1 Description

The SAM9G15 features a number of complementary debug and test capabilities. A common JTAG/ICE (In-Circuit
Emulator) port is used for standard debugging functions, such as downloading code and single-stepping through
programs. The Debug Unit provides a two-pin UART that can be used to upload an application into internal SRAM. It
manages the interrupt handling of the internal COMMTX and COMMRX signals that trace the activity of the Debug
Communication Channel.

A set of dedicated debug and test input/output pins gives direct access to these capabilities from a PC-based test
environment.

10.2 Embedded Characteristics

e ARM926 Real-time In-circuit Emulator
e Two real-time Watchpoint Units
e Two Independent Registers: Debug Control Register and Debug Status Register
e Test Access Port Accessible through JTAG Protocol
e Debug Communications Channel

e Debug Unit
e Two-pin UART
e Debug Communication Channel Interrupt Handling
e Chip ID Register

e |EEE1149.1 JTAG Boundary-scan on All Digital Pins.

Atmel SAM9G15 [DATASHEET] 43

11052D-ATARM-31-Oct-12

10.3 Block Diagram

Figure 10-1. Debug and Test Block Diagram

[]| s
[]| Tcx
[]| o
—
)
l_C ° []| ntrRsT
A o_l
Boundary ICENTAG . []| JraGsEL
Port
.
:) []| Too
[]| RTck
. POR
Reset
and
Test []| TsT

ARMOEJ-S ICE-RT
ARM926EJ-S
A
\ 4
| o []| otxp
DMA DBGU o
< []| orxo

TAP: Test Access Port

Atmel SAM9G15 [DATASHEET] 44

11052D-ATARM-31-Oct-12

10.4 Application Examples

10.4.1 Debug Environment

Figure 10-2 shows a complete debug environment example. The ICE/JTAG interface is used for standard debugging
functions, such as downloading code and single-stepping through the program. A software debugger running on a
personal computer provides the user interface for configuring a Trace Port interface utilizing the ICE/JTAG interface.

Figure 10-2. Application Debug and Trace Environment Example

/
/ Host Debugger \

ICEAJTAG
Interface
ICENJTAG
Connector
RS232 .
SAM9 — Connector Terminal
SAM9-based Application Board

Atmel SAM9G15 [DATASHEET] 45

11052D-ATARM-31-Oct-12

10.4.2 Test Environment

Figure 10-3 shows a test environment example. Test vectors are sent and interpreted by the tester. In this example, the
“board in test” is designed using a number of JTAG-compliant devices. These devices can be connected to form a single
scan chain.

Figure 10-3. Application Test Environment Example

Test Adaptor
P Tester

JTAG
Interface

ICE/JTAG

Connector [| ChiP Nt ---Chip 2

| SAM9 | Chip 1

SAM9-based Application Board In Test

Atmel SAM9G15 [DATASHEET] 46

11052D-ATARM-31-Oct-12

10.5 Debug and Test Pin Description

Table 10-1. Debug and Test Pin List

Pin Name Function Type Active Level
Reset/Test

NRST Microcontroller Reset Input/Output Low

TST Test Mode Select Input High

ICE and JTAG

NTRST Test Reset Signal Input Low

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

T™MS Test Mode Select Input

RTCK Returned Test Clock Output

JTAGSEL JTAG Selection Input
Debug Unit

DRXD Debug Receive Data Input

DTXD Debug Transmit Data Output

Atmel SAM9G15 [DATASHEET] 47

11052D-ATARM-31-Oct-12

10.6 Functional Description

10.6.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. The user must make sure that this pin is tied at low
level to ensure normal operating conditions. Other values associated with this pin are reserved for manufacturing test.

10.6.2 EmbeddedICE™

The ARMYEJ-S Embedded ICE-RT™ is supported via the ICE/JTAG port. It is connected to a host computer via an ICE
interface. Debug support is implemented using an ARM9EJ-S core embedded within the ARM926EJ-S. The internal
state of the ARM926EJ-S is examined through an ICE/JTAG port which allows instructions to be serially inserted into the
pipeline of the core without using the external data bus. Therefore, when in debug state, a store-multiple (STM) can be
inserted into the instruction pipeline. This exports the contents of the ARM9EJ-S registers. This data can be serially
shifted out without affecting the rest of the system.

There are two scan chains inside the ARM9EJ-S processor which support testing, debugging, and programming of the
EmbeddedICE-RT. The scan chains are controlled by the ICE/JTAG port.

EmbeddedICE mode is selected when JTAGSEL is low. It is not possible to switch directly between ICE and JTAG
operations. A chip reset must be performed after JTAGSEL is changed.

For further details on the EmbeddedICE-RT, see the ARM document:
ARMBS9EJ-S Technical Reference Manual (DDI 0222A).

10.6.3 JTAG Signal Description
TMS is the Test Mode Select input which controls the transitions of the test interface state machine.

TDI is the Test Data Input line which supplies the data to the JTAG registers (Boundary Scan Register, Instruction
Register, or other data registers).

TDO is the Test Data Output line which is used to serially output the data from the JTAG registers to the equipment
controlling the test. It carries the sampled values from the boundary scan chain (or other JTAG registers) and propagates
them to the next chip in the serial test circuit.

NTRST (optional in IEEE Standard 1149.1) is a Test-ReSeT input which is mandatory in ARM cores and used to reset
the debug logic. On Atmel ARM926EJ-S-based cores, NTRST is a Power On Reset output. It is asserted on power on. If
necessary, the user can also reset the debug logic with the NTRST pin assertion during 2.5 MCK periods.

TCK is the Test ClocK input which enables the test interface. TCK is pulsed by the equipment controlling the test and not
by the tested device. It can be pulsed at any frequency. Note the maximum JTAG clock rate on ARM926EJ-S cores is
1/6th the clock of the CPU. This gives 5.45 kHz maximum initial JTAG clock rate for an ARM9E running from the 32.768
kHz slow clock.

RTCK is the Return Test Clock. Not an IEEE Standard 1149.1 signal added for a better clock handling by emulators.
From some ICE Interface probes, this return signal can be used to synchronize the TCK clock and take not care about
the given ratio between the ICE Interface clock and system clock equal to 1/6th. This signal is only available in JTAG ICE
Mode and not in boundary scan mode.

10.6.4 Debug Unit

The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several debug and trace purposes
and offers an ideal means for in-situ programming solutions and debug monitor communication. Moreover, the
association with two peripheral data controller channels permits packet handling of these tasks with processor time
reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals that come from the ICE and
that trace the activity of the Debug Communication Channel. The Debug Unit allows blockage of access to the system
through the ICE interface.

Atmel SAM9G15 [DATASHEET] 48

11052D-ATARM-31-Oct-12

A specific register, the Debug Unit Chip ID Register, gives information about the product version and its internal
configuration.

The device Debug Unit Chip ID value is 0x819A_05A0 on 32-bit width.
For further details on the Debug Unit, see the Debug Unit section.

10.6.5 IEEE 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST and BYPASS functions
are implemented. In ICE debug mode, the ARM processor responds with a non-JTAG chip ID that identifies the
processor to the ICE system. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must be performed after JTAGSEL is
changed.

A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.

Atmel SAM9G15 [DATASHEET] 49

11052D-ATARM-31-Oct-12

10.6.6 JTAG ID Code Register

Access: Read-only

31 30 29 28 27 26 25 24

| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |
15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

» VERSION[31:28]: Product Version Number
Set to 0x0.

* PART NUMBER[27:12]: Product Part Number
Product part Number is 0x5B2F

* MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

Bit[O] required by IEEE Std. 1149.1.

Set to Ox1.

JTAG ID Code value is 0x05B2_FO03F.

Atmel SAM9G15 [DATASHEET] 50

11052D-ATARM-31-Oct-12

11.

11.1

11.2

11.3

Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed
thanks to the BMS pin. This allows the user to layout the ROM or an external memory to 0x0. The sampling of the BMS
pin is done at reset.

If BMS is detected at 0, the controller boots on the memory connected to Chip Select 0 of the External Bus Interface.
In this boot mode, the chip starts with its default parameters (all registers in their reset state), including as follows:

e The main clock is the on-chip 12 MHz RC oscillator

e The Static Memory Controller is configured with its default parameters
The user software in the external memory performs a complete configuration:

e Enable the 32768 Hz oscillator if best accuracy is needed

e Program the PMC (main oscillator enable or bypass mode)

e Program and Start the PLL

e Reprogram the SMC setup, cycle, hold, mode timing registers for EBI CS0, to adapt them to the new clock

e Switch the system clock to the new value

If BMS is detected at 1, the boot memory is the embedded ROM and the Boot Program described below is executed.
(Section 11.1 “ROM Code”) .

ROM Code

The ROM Code is a boot program contained in the embedded ROM. It is also called “First level bootloader”.

The ROM Code performs several steps:
e Basic chip initialization: XTal or external clock frequency detection
e Attempt to retrieve a valid code from external non-volatile memories (NVM)
e Execution of a monitor called SAM-BA Monitor, in case no valid application has been found on any NVM

Flow Diagram

The ROM Code implements the algorithm shown below in Figure 11-1.

Figure 11-1. ROM Code Algorithm Flow Diagram

Chip Setup

Valid boot code
found in one
NVM

Copy and run it
in internal SRAM

SAM-BA Monitor

Chip Setup
At boot start-up, the processor clock (PCK) and the master clock (MCK) source is the 12 MHz Fast RC Oscillator.

Atmel SAM9G15 [DATASHEET] 51

11052D-ATARM-31-Oct-12

Initialization follows the steps described below:

11.4

1141

Atmel

1.
2.

Stack setup for ARM supervisor mode.

Main Oscillator Detection: the Main Clock is switched to the 32 kHz RC oscillator to allow external clock fre-
qguency to be measured. Then the Main Oscillator is enabled and set in bypass mode. If the MOSCSELS bit rises,
an external clock is connected, and the next step is Main Clock Selection (3). If not, the bypass mode is cleared to
attempt external quartz detection. This detection is successful when the MOSCXTS and MOSCSELS bits rise,
else the 12 MHz Fast RC internal oscillator is used as the Main Clock.

Main Clock Selection: the Master Clock source is switched from the Slow Clock to the Main Oscillator without
prescaler. The PMC Status Register is polled to wait for MCK Ready. PCK and MCK are now the Main Clock.

C variable initialization: non zero-initialized data is initialized in the RAM (copy from ROM to RAM). Zero-initial-
ized data is set to 0 in the RAM.

PLLA initialization: PLLA is configured to get a PCK at 96 MHz and an MCK at 48 MHz. If an external clock or
crystal frequency running at 12 MHz is found, then the PLLA is configured to allow communication on the USB link
for the SAM-BA Monitor; else the Main Clock is switched to the internal 12 MHz Fast RC, but USB will not be
activated

Table 11-1. External Clock and Crystal Frequencies allowed for Boot Sequence (in MHz)

Boot Sequence <4 12 >28
Boot on External Memories Yes Yes Yes
SAM-BA Monitor through DBGU Yes Yes Yes
SAM-BA Monitor through USB No Yes No

Note that if the clock frequency is provided not at 12 MHz but between 4 and 28 MHz, it is considered by the ROM Code
as the 12 MHz clock frequency, and the PLL settings are configured accordingly.

NVM Boot

NVM Boot Sequence

The boot sequence on external memory devices can be controlled using the Boot Sequence Configuration Register
(BSC_CR). The 3 LSBs of the BSC_CR are available to control the sequence. See the “Boot Sequence Controller
(BSC)” section for more details.

The user can then choose to bypass some steps shown in Figure 11-2 “NVM Bootloader Sequence Diagram” according
to the BSC_CR Value.

Table 11-2. Boot Sequence Configuration Register Values

BOOT Value NAND SAM-BA
SPIO NPCS0 | SDCard Flash SPIO NPCS1 | TWIEEPROM | Monitor

Y Y Y Y Y

Y - Y Y Y

Y - - Y %

% - - Y Y

% - - - %

N o | oW |N |+ | O

<|<|=<|=<|=<|<|x<

SAM9G15 [DATASHEET] 52

11052D-ATARM-31-Oct-12

Figure 11-2. NVM Bootloader Sequence Diagram

Device
Setup
Yes
SPI0 G0 Alash Boot A SP1 Flash Bootloader
No —+
Yes Copy from
< m@—{ T T S5 Cord Bcotonder
No —
Yes Copy from
NAND Rash Boot NAND Hedh to SRAM NAND Rash Bootloader
No -
Yes Copy from
SPI0 GS1 Rash Boot 1 Al to SFAM | An | SP1 Aash Bootloader
No —
Yes Copy from
< TWIEEFFOM Boot TWI EEPFOM to SRAM | An | TWI EEPFROM Bootloader
No —
SAM-BA
Monitor

Atmel SAM9G15 [DATASHEET] 53

11052D-ATARM-31-Oct-12

11.4.2 NVM Bootloader Program Description

Figure 11-3. NVM Bootloader Program Diagram

(Sart)

Initialize NVM

Restore the reset values
— > for the peripheralsand
Jump to next boot solution

Initialization OK?

Valid code detection in NVM

NVM containsvalid code

Copy the valid code
from external NVM to internal SRAM.

Restore the reset valuesfor the peripherals.
Perform the REMIAP and set the PCto 0
to jump to the downloaded application

-

The NVM bootloader program first initializes the PIOs related to the NVM device. Then it configures the right peripheral
depending on the NVM and tries to access this memory. If the initialization fails, it restores the reset values for the PIO
and the peripheral and then tries the same operations on the next NVM of the sequence.

If the initialization is successful, the NVM bootloader program reads the beginning of the NVM and determines if the NVM
contains valid code.

If the NVM does not contain valid code, the NVM bootloader program restores the reset value for the peripherals and
then tries the same operations on the next NVM of the sequence.

If valid code is found, this code is loaded from NVM into internal SRAM and executed by branching at address
0x0000_0000 after remap. This code may be the application code or a second-level bootloader. All the calls to functions
are PC relative and do not use absolute addresses.

Atmel SAM9G15 [DATASHEET] 54

11052D-ATARM-31-Oct-12

0x0000_0000

Figure 11-4. Remap Action after Download Completion

0x0000_0000

REMAP
Internal Internal
ROM > SRAM
0x0010_0000 0x0010_0000
Internal Internal
ROM ROM
0x0030_0000 0x0030_0000
Internal Internal
SRAM SRAM

11.4.3 Valid Code Detection

There are two kinds of valid code detection.

11.4.3.1 ARM Exception Vectors Check

The NVM bootloader program reads and analyzes the first 28 bytes corresponding to the first seven ARM exception
vectors. Except for the sixth vector, these bytes must implement the ARM instructions for either branch or load PC with
PC relative addressing.

Figure 11-5. LDR Opcode

31 28|27 24123 20(19 16|15 1211 0
11 1 0[O0 1 I P{U 1T WO R O set

Figure 11-6. B Opcode
31 28|27 24123 0
11 1 01 0 1 0 O set (24 bits)

Unconditional instruction: OXE for bits 31 to 28

Load PC with PC relative addressing instruction:
Rn =Rd = PC = OxF
==0 (12-bit immediate value)
P==1 (pre-indexed)

U offset added (U==1) or subtracted (U==0)
==1

The sixth vector, at offset Ox14, contains the size of the image to download. The
user's own vector. This information is described below.

user must replace this vector with the

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

55

Atmel

Figure 11-7. Structure of the ARM Vector 6

31 0

Sze of the code to download in bytes

The value has to be smaller than 24 kbytes. This size is the internal SRAM size minus the stack size used by the ROM
Code at the end of the internal SRAM.

Example
An example of valid vectors follows:

00 €a000006 BOx20

04 eafffffe BOx04

08 ea00002f B_main

Oc eafffffe BOxOc

10 eafffffe BOx10

14 00001234 BOx14<- Code size = 4660 bytes
18 eafffffe BOx18

11.4.3.2 boot.bin File Check

This method is the one used on FAT formatted SDCard. The boot program must be a file named “boot.bin” written in
the root directory of the filesystem. Its size must not exceed the maximum size allowed: 24 kbytes (0x6000).

11.4.4 Detailed Memory Boot Procedures

11.4.4.1 NAND Flash Boot: NAND Flash Detection
After NAND Flash interface configuration, a reset command is sent to the memory.

The Boot Program first tries to find valid software on a NAND Flash device connected to EBI CS3, with data lines
connected to DO-D7, then on NAND Flash connected to D16-D23. Hardware ECC detection and correction are provided
by the PMECC peripheral (refer to the PMECC section in the datasheet for more information).
The Boot Program is able to retrieve NAND Flash parameters and ECC requirements using two methods as follows:

e The detection of a specific header written at the beginning of the first page of NAND Flash,
or

e Through the ONFI parameters for ONFI compliant memories.

Atmel SAM9G15 [DATASHEET] 56

11052D-ATARM-31-Oct-12

Figure 11-8. Boot NAND Flash Download

Initialize NAND Flash interface

Send Reset command

No

First page contains valid header NAND Flash is ONFI Compliant

Read NAND Flash and PMECC parameters| Read NAND Flash and PMECC parameters|
from the header from the ONFI

Copy the valid code
from external NVM to internal SRAM.

Restore the reset values for the peripherals.
Perform the REMAP and set the PC to 0
to jump to the downloaded application

Restore the reset values
for the peripherals and

End Jump to next bootable memory

Atmel SAM9G15 [DATASHEET] 57

11052D-ATARM-31-Oct-12

NAND Flash Specific Header Detection

This is the first method used to determine NAND Flash parameters. After Initialization and Reset command, the Boot
Program reads the first page without ECC check, to determine if the NAND parameter header is present. The header is
made of 52 times the same 32-bit word (for redundancy reasons) which must contain NAND and PMECC parameters
used to correctly perform the read of the rest of the data in the NAND. This 32-bit word is described below:

31 30 29 28 27 26 25 24

| key - | eccOffset |
23 22 21 19 18 17 16

| eccOffset | sectorSize |
15 14 13 11 10 9 8

| eccBitReq | spareSize |
7 6 5 3 2 1 0

| spareSize nbSectorPerPage usePmecc |

e usePmecc: Use PMECC
0 = Do not use PMECC to detect and correct the data.
1 = Use PMECC to detect and correct the data.

» nbSectorPerPage: Number of sectors per page
e spareSize: Size of the spare zone in bytes
* eccBitReq: Number of ECC bits required

» sectorSize: Size of the ECC sector
0 =for 512 bytes.

1 = for 1024 bytes per sector.

Other value for future use.

» eccOffset: Offset of the first ECC byte in the spare zone
A value below 2 is not allowed and will be considered as 2.

» key: value OxC must be written here to validate the content of the whole word.

If the header is valid, the Boot Program will continue with the detection of valid code.
ONFI 2.2 Parameters

In case no valid header has been found, the Boot Program will check if the NAND Flash is ONFI compliant, sending a
Read Id command (0x90) with 0x20 as parameter for the address. If the NAND Flash is ONFI compliant, the Boot
Program retrieves the following parameters with the help of the Get Parameter Page command:

° Number of bytes per page (byte 80)

° Number of bytes in spare zone (byte 84)

° Number of ECC bit correction required (byte 112)

° ECC sector size: by default set to 512 bytes, or 1024 bytes if the ECC bit capability above is OxFF

By default, ONFI NAND Flash detection will turn ON the usePmecc parameter, and ECC correction algorithm is
automatically activated.

Once the Boot Program retrieves the parameter, using one of the two methods described above, it will read the first page
again, with or without ECC, depending on the usePmecc parameter. Then it looks for a valid code programmed just after
the header offset OxDO. If the code is valid, the program is copied at the beginning of the internal SRAM.

Note: Booting on 16-bit NAND Flash is not possible, only 8-bit NAND Flash memories are supported.

SAM9G15 [DATASHEET] 58

11052D-ATARM-31-Oct-12

Atmel

11.4.4.2 NAND Flash Boot: PMECC Error Detection and Correction

NAND Flash boot procedure uses PMECC to detect and correct errors during NAND Flash read operations in two cases:

e When the usePmecc flag is set in the specific NAND header. If the flag is not set, no ECC correction is performed
during NAND Flash page read.

e When the NAND Flash has been detected using ONFI parameters.

The ROM code embeds the software used in the process of ECC detection/correction: the Galois Field tables, and the
function PMECC_CorrectionAlgo(). The user does not need to embedd it in other software.

This function can be called by user software when PMECC status returns errors after a read page command.
Its address can be retrieved by reading the third vector of the ROM Code interrupt vector table, at address 0x100008.

The API of this function is:
unsigned int PMECC_CorrectionAlgo(AT91PS_PMECC pPMECC,
AT91PS_PMERRLOC pPMERRLOC,
PMECC_paramDesc_struct *PMECC_desc,
unsigned int PMECC_status,
unsigned int pageBuffer)

pPMECC : pointer to the PMECC base address,

pPMERRLOC : pointer to the PMERRLOC base address,
PMECC_desc : pointer to the PMECC descriptor,

PMECC_status : the status returned by the read of PMECCISR register;
pageBuffer : address of the buffer containing the page to be corrected.

The PMECC descriptor structure is:
typedef struct _PMECC_paramDesc_struct {
unsigned int pageSize;
unsigned int spareSize;
unsigned int sectorSize; // 0 for 512, 1 for 1024 bytes
unsigned int errBitNbrCapability;
unsigned int eccSizeByte;
unsigned int eccStartAddr;
unsigned int eccEndAddr;

unsigned int nandWR;
unsigned int spareEna;
unsigned int modeAuto;
unsigned int clkCtrl;
unsigned int interrupt;

int tt;
int mm;
int nn;

short *alpha_to;
short *index_of;

short partialSyn[100];
short si[100];

/* sigma table */

short smu[TT_MAX + 2][2 * TT_MAX + 1];
/* polynom order */

short Imu[TT_MAX + 1];

} PMECC_paramDesc_struct;

Atmel SAM9G15 [DATASHEET] 59

11052D-ATARM-31-Oct-12

The Galois field tables are mapped in the ROM just after the ROM code, as described in Figure 11-9 below:

Figure 11-9. Galois Field Table Mapping
0x0010_0000

ROM Code

0x0010_8000

Galois field
tables for
512-byte

sectors

correction
0x0011_0000

Galois field
tables for
1024-byte
sectors
correction

For a full description and an example of how to use the PMECC detection and correction feature, refer to the software
package dedicated to this device on Atmel's web site.

11.4.4.3 SD Card Boot

The SD Card bootloader uses MCIO. It looks for a “boot.bin” file in the root directory of a FAT12/16/32 formatted SD
Card.

Supported SD Card Devices

SD Card Boot supports all SD Card memories compliant with SD Memory Card Specification V2.0. This includes SDHC
cards.

11.4.4.4 SPI Flash Boot
Two kinds of SPI Flash are supported: SPI Serial Flash and SPI DataFlash.

The SPI Flash bootloader tries to boot on SPI0 Chip Select 0, first looking for SPI Serial Flash, and then for SPI
DataFlash.

It uses only one valid code detection: analysis of ARM exception vectors.

The SPI Flash read is done by means of a Continuous Read command from address 0x0. This command is OXE8 for
DataFlash and 0xOB for Serial Flash devices.

Supported DataFlash Devices
The SPI Flash Boot program supports all Atmel DataFlash devices.

Table 11-3. DataFlash Device

Device Density Page Size (bytes) Number of Pages
AT45DB011 1 Mbit 264 512
AT45DB021 2 Mbits 264 1024
AT45DB041 4 Mbits 264 2048
AT45DB081 8 Mbits 264 4096
AtmeL SAM9G15 [DATASHEET] 60

11052D-ATARM-31-Oct-12

Table 11-3. DataFlash Device (Continued)

Device Density Page Size (bytes) Number of Pages
AT45DB161 16 Mbits 528 4096
AT45DB321 32 Mbits 528 8192
AT45DB642 64 Mbits 1056 8192

Supported Serial Flash Devices

The SPI Flash Boot program supports all SPI Serial Flash devices responding correctly at both Get Status and
Continuous Read commands.

11.4.4.5 TWI EEPROM Boot

The TWI EEPROM Bootloader uses the TWIO. It uses only one valid code detection. It analyzes the ARM exception

vectors.

Supported TWI EEPROM Devices

TWI EEPROM Boot supports all 1>’C-compatible TWI EEPROM memories using 7-bit device address 0x50.

11.4.5 Hardware and Software Constraints

The NVM drivers use several PIOs in peripheral mode to communicate with external memory devices. Care must be
taken when these PIOs are used by the application. The devices connected could be unintentionally driven at boot time,
and electrical conflicts between output pins used by the NVM drivers and the connected devices may occur.

To assure correct functionality, it is recommended to plug in critical devices to other pins not used by NVM.

Table 11-4 contains a list of pins that are driven during the boot program execution. These pins are driven during the boot
sequence for a period of less than 1 second if no correct boot program is found.

Before performing the jump to the application in internal SRAM, all the PIOs and peripherals used in the boot program

are set to their reset state.

Table 11-4. PIO Driven during Boot Program Execution

NVM Bootloader Peripheral Pin PIO Line
EBI CS3 SMC NANDOE PIODO
EBI CS3 SMC NANDWE PIOD1
EBI CS3 SMC NANDCS PIOD4

NAND
EBI CS3 SMC NAND ALE A21
EBI CS3 SMC NAND CLE A22
EBI CS3 SMC Cmd/Addr/Data D[16:0]
MCIO MCIO_CK PIOA17
MCIO MCI0_DO PIOA15

SD Card MCIO MCI0_D1 PIOA18
MCIO0 MCI0_D2 PIOA19
MCIO MCI0_D3 PIOA20

Atmel

SAM9G15 [DATASHEET] 61

11052D-ATARM-31-Oct-12

Table 11-4. PIO Driven during Boot Program Execution (Continued)

NVM Bootloader Peripheral Pin PIO Line
SPIO MOSI PIOA10
SPIO MISO PIOALl
SPI Flash SPIO SPCK PIOA13
SPIO NPCSO0 PIOA14
SPIO NPCS1 PIOA7
TWIO TWDO PIOA30
TWIO EEPROM
TWIO TWCKO PIOA31
DBGU DRXD PIOA9
SAM-BA Monitor
DBGU DTXD PIOA10

Atmel SAM9G15 [DATASHEET] 62

11052D-ATARM-31-Oct-12

11.5 SAM-BA Monitor

If no valid code has been found in NVM during the NVM bootloader sequence, the SAM-BA Monitor program is launched.

The SAM-BA Monitor principle is to:

Initialize DBGU and USB
Check if USB Device enumeration has occurred
Check if characters have been received on the DBGU

Once the communication interface is identified, the application runs in an infinite loop waiting for different commands as
listed in Table 11-5.

Figure 11-10.SAM-BA Monitor Diagram

11.5.1 Command List

Table 11-5. Commands Available through the SAM-BA Monitor

No valid code in NVM

Init DBGU and USB

No

USB Enumeration
Successful ?

Run monitor
Wait for command
on the USB link

Character(s) received
on DBGU ?

Run monitor
Wait for command
on the DBGU link

Command Action Argument(s) Example

N set Normal mode No argument N#

T set Terminal mode No argument T#

(0] write a byte Address, Value# 0200001,CA#

0 read a byte Address,# 0200001,#

H write a half word Address, Value# H200002,CAFE#
h read a half word Address,# h200002,#

W write a word Address, Value# W200000,CAFEDECA#
w read a word Address,# w200000,#

S send a file Address,# S200000,#

R receive a file Address, NbOfBytes# R200000,1234#
G go Address# G200200#

\% display version No argument Vi

e Mode commands:

Atmel

SAM9G15 [DATASHEET] 63

11052D-ATARM-31-Oct-12

e Normal mode configures SAM-BA Monitor to send / receive data in binary format,
e Terminal mode configures SAM-BA Monitor to send / receive data in ascii format.
e Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
e Address: Address in hexadecimal.
e Value: Byte, halfword or word to write in hexadecimal.
e Output: >’
e Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.
e Address: Address in hexadecimal.
e Output: The byte, halfword or word read in hexadecimal followed by >’
e Send afile (S): Send a file to a specified address.
e Address: Address in hexadecimal.
e Output: >’

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the end of the com-
mand execution.

e Receive afile (R): Receive data into a file from a specified address
e Address: Address in hexadecimal.
e NbOfBytes: Number of bytes in hexadecimal to receive.
e Output: >’
e Go (G): Jump to a specified address and execute the code.
e Address: Address to jump in hexadecimal.

e Output: >’once returned from the program execution. If the executed program does not handle the link
register at its entry and does not return, the prompt will not be displayed.

e Get Version (V): Return the Boot Program version.
e Output: version, date and time of ROM code followed by >’.

11.5.2 DBGU Serial Port
Communication is performed through the DBGU serial port initialized to 115,200 Baud, 8 bits of data, no parity, 1 stop bit.

11.5.2.1 Supported External Crystal/External Clocks

The SAM-BA Monitor supports a frequency of 12 MHz to allow DBGU communication for both external crystal and
external clock.

11.5.2.2 Xmodem Protocol

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this protocol
can be used to send the application file to the target. The size of the binary file to send depends on the SRAM size
embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size because the Xmodem
protocol requires some SRAM memory in order to work.

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC16 to guarantee
detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each block of
the transfer looks like:
<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

e <SOH> =01 hex

e <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to O0OH (not to 01)

e <255-plk #> = 1's complement of the blk#.

e <checksum> = 2 bytes CRC16

Figure 11-11 shows a transmission using this protocol.

Atmel SAM9G15 [DATASHEET] 64

11052D-ATARM-31-Oct-12

Figure 11-11.Xmodem Transfer Example

Host Device

C

SOH 01 FEData[128] CRC ORC

ACK

SOH 02 FD Data[128] CRCCRC

ACK

SOH 03 FC Data[100] CRCCRC

ACK

EOT

ACK

11.5.3 USB Device Port

11.5.3.1 Supported External Crystal / External Clocks

The only frequency supported by SAM-BA Monitor to allow USB communication is a 12 MHz crystal or external clock.

11.5.3.2USB Class

The device uses the USB Communication Device Class (CDC) drivers to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Windows®, from Windows 98SE® to
Windows XP®. The CDC document, available at www.usb.org, describes how to implement devices such as ISDN
modems and virtual COM ports.

The Vendor ID is Atmel's vendor ID 0x03EB. The product ID is 0x6124. These references are used by the host operating
system to mount the correct driver. On Windows systems, the INF files contain the correspondence between vendor ID
and product ID.

11.5.3.3 Enumeration Process

The USB protocol is a master/slave protocol. The host starts the enumeration, sending requests to the device through
the control endpoint. The device handles standard requests as defined in the USB Specification.

Table 11-6. Handled Standard Requests

Request Definition
GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.
GET_STATUS Returns status for the specified recipient.
SET_FEATURE Used to set or enable a specific feature.
CLEAR_FEATURE Used to clear or disable a specific feature.
AtmeL SAM9G15 [DATASHEET] 65

11052D-ATARM-31-Oct-12

The device also handles some class requests defined in the CDC class.

Table 11-7. Handled Class Requests

Request Definition

Configures DTE rate, stop bits, parity and number of

SET_LINE_CODING character bits.

Requests current DTE rate, stop bits, parity and number
of character bits.

RS-232 signal used to tell the DCE device the DTE
device is now present.

GET_LINE_CODING

SET_CONTROL_LINE_STATE

Unhandled requests are STALLed.

11.5.3.4 Communication Endpoints

There are two communication endpoints and endpoint 0 is used for the enumeration process. Endpoint 1 is a 64-byte
Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-BA Boot commands are sent by the host through
endpoint 1. If required, the message is split by the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

Atmel SAM9G15 [DATASHEET] 66

11052D-ATARM-31-Oct-12

12. Boot Sequence Controller (BSC)

12.1 Description

The System Controller embeds a Boot Sequence Configuration Register to save timeout delays on boot. The boot
sequence is programmable through the Boot Sequence Configuration Register (BSC_CR).

This register is powered by VDDBU, the modification is saved and applied after the next reset. The register is taking
Factory Value in case of battery removing.

This register is programmable with user programs or SAM-BA and it is key-protected.

12.2 Embedded Characteristics
e VDDBU powered register

12.3 Product Dependencies
e Product-dependent order

SAM9G15 [DATASHEET] 67
/4 t m eL 11052D-ATARM-31-Oct-12

12.4 Boot Sequence Controller (BSC) User Interface

Table 12-1. Register Mapping

Offset Register Name Access Reset
0x0 Boot Sequence Configuration Register BSC_CR Read-write -
12.4.1 Boot Sequence Configuration Register
Name: BSC_CR
Address: OXFFFFFES54
Access: Read-write
Factory Value: 0x0000_0000
31 30 29 28 27 26 25 24
| BOOTKEY |
23 22 21 20 19 18 17 16
| BOOTKEY |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

BOOT

» BOOT: Boot Media Sequence

This value is defined in the product-dependent ROM code. It is only written if BOOTKEY carries the valid value.
Please refer to the “NVM Boot Sequence” section of this datasheet for details on BOOT value.

+ BOOTKEY

0x6683 (BSC_KEY): valid key to write the BSC_CR register; it needs to be written at the same time as the BOOT field.

Other values disable the write access. This key field is write-only.

Atmel

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

68

13. Advanced Interrupt Controller (AIC)

13.1 Description

The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored interrupt controller,
providing handling of up to thirty-two interrupt sources. It is designed to substantially reduce the software and real-time
overhead in handling internal and external interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs of an ARM processor.
Inputs of the AIC are either internal peripheral interrupts or external interrupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus permitting higher priority
interrupts to be serviced even if a lower priority interrupt is being treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External interrupt sources can be
programmed to be positive-edge or negative-edge triggered or high-level or low-level sensitive.

The fast forcing feature redirects any internal or external interrupt source to provide a fast interrupt rather than a normal
interrupt.

Atmel SAM9G15 [DATASHEET] 69

11052D-ATARM-31-Oct-12

13.2 Embedded Characteristics
Controls the Interrupt Lines (nIRQ and nFIQ) of an ARM® Processor
Thirty-two Individually Maskable and Vectored Interrupt Sources

e Source 0 is Reserved for the Fast Interrupt Input (FIQ)

e Source 1 is Reserved for System Peripherals

e Source 2 to Source 31 Control up to Thirty Embedded Peripheral Interrupts or External Interrupts

e Programmable Edge-triggered or Level-sensitive Internal Sources

e Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive External Sources
e 8-level Priority Controller

e Drives the Normal Interrupt of the Processor

e Handles Priority of the Interrupt Sources 1 to 31

e Higher Priority Interrupts Can Be Served During Service of Lower Priority Interrupt
e Vectoring

e Optimizes Interrupt Service Routine Branch and Execution

e One 32-bit Vector Register per Interrupt Source

e Interrupt Vector Register Reads the Corresponding Current Interrupt Vector
e Protect Mode

e Easy Debugging by Preventing Automatic Operations when Protect Models Are Enabled
e Fast Forcing

e Permits Redirecting any Normal Interrupt Source to the Fast Interrupt of the Processor
e General Interrupt Mask

e Provides Processor Synchronization on Events Without Triggering an Interrupt
e \Write Protected Registers

Atmel SAM9G15 [DATASHEET] 70

11052D-ATARM-31-Oct-12

13.3 Block Diagram

Figure 13-1. Block Diagram

Fl AIC
ARM
IRQO-IRQN Processor
Up to
Thirty-two »{ nFIQ
N Sources
“~._Embedded »| nIRQ
Embedded >
Peripheral
A
~ ¥ APB R

13.4 Application Block Diagram

Figure 13-2. Description of the Application Block

OS-based Applications

Standalone]
Applications OS Drivers

RTOS Drivers

Hard Real Time Tasks

General OS Interrupt Handler

Advanced Interrupt Controller

Embedded Peripherals

External Peripherals
(External Interrupts)

13.5 AIC Detailed Block Diagram

Figure 13-3. AIC Detailed Block Diagram

Advanced Interrupt Controller ARM
DFIQ Processor
PIO External | tFast t »| NFIQ
Controller Source Cn etrru"p
Input I—» ontroller
Stage
D‘ > > > »| NIRQ
IRQO-IRQN
Qo-Ra PIOIRQ Fast Interrupt b A
_ Forcing - Priority ro?esior
| Internal > Controller Cloc
Source
»| Input Power
Embedded Stage Management
Peripherals Controller
User Interface Wake Up
A
_ Y APB -

Atmel

SAM9G15 [DATASHEET]

11052D-ATARM-31-Oct-12

71

13.6 1/O Line Description

Table 13-1. 1/O Line Description

Pin Name Pin Description Type
FIQ Fast Interrupt Input
IRQO - IRQN Interrupt O - Interrupt n Input

13.7 Product Dependencies

13.7.1 1/O Lines

The interrupt signals FIQ and IRQO to IRQn are normally multiplexed through the PI1O controllers. Depending on the
features of the PIO controller used in the product, the pins must be programmed in accordance with their assigned
interrupt function. This is not applicable when the PIO controller used in the product is transparent on the input path.

Table 13-2. /O Lines

Instance Signal I/O Line Peripheral
AIC FIQ PC31 A
AIC IRQ PB18 A

13.7.2 Power Management

The Advanced Interrupt Controller is continuously clocked. The Power Management Controller has no effect on the
Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the ARM processor while it is
in Idle Mode. The General Interrupt Mask feature enables the AIC to wake up the processor without asserting the
interrupt line of the processor, thus providing synchronization of the processor on an event.

13.7.3 Interrupt Sources

The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the Interrupt Source 0 cannot
be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring of the system peripheral
interrupt lines. When a system interrupt occurs, the service routine must first distinguish the cause of the interrupt. This is
performed by reading successively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded user peripheral or to
external interrupt lines. The external interrupt lines can be connected directly, or through the P1O Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling. Accordingly, the PIO
Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source number (as well as the bit
number controlling the clock of the peripheral). Consequently, to simplify the description of the functional operations and
the user interface, the interrupt sources are named FIQ, SYS, and PID2 to PID31.

Atmel SAM9G15 [DATASHEET] 72

11052D-ATARM-31-Oct-12

13.8 Functional Description

13.8.1 Interrupt Source Control

13.8.1.1 Interrupt Source Mode

The Advanced Interrupt Controller independently programs each interrupt source. The SRCTYPE field of the
corresponding AIC_SMR (Source Mode Register) selects the interrupt condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be programmed either in
level-sensitive mode or in edge-triggered mode. The active level of the internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sensitive modes, or in
positive edge-triggered or negative edge-triggered modes.

13.8.1.2 Interrupt Source Enabling

Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the command registers;
AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt Disable Command Register). This set of
registers conducts enabling or disabling in one instruction. The interrupt mask can be read in the AIC_IMR register. A
disabled interrupt does not affect servicing of other interrupts.

13.8.1.3 Interrupt Clearing and Setting

All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be individually set or cleared
by writing respectively the AIC_ISCR and AIC_ICCR registers. Clearing or setting interrupt sources programmed in level-
sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the “memorization” circuitry
activated when the source is programmed in edge-triggered mode. However, the set operation is available for auto-test
or software debug purposes. It can also be used to execute an AlC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector Register) is read. Only
the interrupt source being detected by the AIC as the current interrupt is affected by this operation. (See “Priority
Controller” on page 76.) The automatic clear reduces the operations required by the interrupt service routine entry code
to reading the AIC_IVR. Note that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing
feature enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast Forcing” on page 79.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

13.8.1.4 Interrupt Status

For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its mask in AIC_IMR
(Interrupt Mask Register). AIC_IPR enables the actual activity of the sources, whether masked or not.

The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on page 76) and the register
AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.

Atmel SAM9G15 [DATASHEET] 73

11052D-ATARM-31-Oct-12

Figure 13-4. Internal Interrupt Source Input Stage

AIC_SMRI
(SRCTYPE)

Edge I

I:‘, : Fast Interrupt Controller
L - , or
Priority Controller
Edge
Detector

Set Clear
]

Source i

|AIC_ISCR I
| AIC_ICCR I

Il

Figure 13-5. External Interrupt Source Input Stage

AIC_SMRi
Level/ | AIC_IPR |
Edge 3
Source i AIC_IMR
= Fast Interrupt Controller
| |—< > or
Priority Controller
Pos./Neg. | AIC_IECR |
I
Edge
Detector EE
Set Clear

| I
| AIC_ISCR I | AIC_IDCR I

[_Aaic_iccr |

13.8.2 Interrupt Latencies

Global interrupt latencies depend on several parameters, including:

e The time the software masks the interrupts.

e Occurrence, either at the processor level or at the AIC level.

e The execution time of the instruction in progress when the interrupt occurs.

e The treatment of higher priority interrupts and the resynchronization of the hardware signals.
This section addresses only the hardware resynchronizations. It gives details of the latency times between the event on
an external interrupt leading in a valid interrupt (edge or level) or the assertion of an internal interrupt source and the
assertion of the nIRQ or nFIQ line on the processor. The resynchronization time depends on the programming of the
interrupt source and on its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt sources.

Atmel SAM9G15 [DATASHEET] 74

11052D-ATARM-31-Oct-12

Figure 13-6. External Interrupt Edge Triggered Source

MCK

IRQ or FIQ
(Positive Edge)

[LI L L

IRQ or FIQ
(Negative Edge)

niRQ

Maximum IRQ Latency = 4 Cycles

nFlQ

Maximum FIQ Latency = 4 Cycles

Figure 13-7. External Interrupt Level Sensitive Source

MCK | l l |

IRQ or FIQ
(High Level)

IRQ or FIQ
(Low Level)

nIRQ

Maximum IRQ |
Latency = 3 Cycles |

nFIQ

Maximum FIQ
Latency = 3 cycles

Figure 13-8. Internal Interrupt Edge Triggered Source
