Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

74ALVCH16841 20-bit bus interface D-type latch (3-State)

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard no. 8-1A
- Wide supply voltage range of 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- MULTIBYTE ${ }^{\text {TM }}$ flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Current drive $\pm 24 \mathrm{~mA}$ at 3.0 V
- All inputs have bus hold circuitry
- Output drive capability 50Ω transmission lines @ $85^{\circ} \mathrm{C}$
- 3-State non-inverting outputs for bus oriented applications

DESCRIPTION

The 74ALVCH16841 has two 10-bit D-type latch featuring separate D-type inputs for each latch and 3-State outputs for bus oriented applications. The two sections of each register are controlled independently by the latch enable (nLE) and output enable ($\mathrm{n} \overline{\mathrm{OE} \text {) }}$ control gates.

When nOE is LOW, the data in the registers appears at the outputs. When $n \overline{O E}$ is High the outputs are in High-impedance OFF state. Operation of the nOE input does not affect the state of the flip-flops.
The 74ALVCH16841 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

PIN CONFIGURATION

SA00076

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS		TYPICAL	UNIT
tPHL/tPLH	$\begin{aligned} & \text { Propagation delay } \\ & n D_{n} \text { to } n Q_{n} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$	ns
tphL $^{\text {/PPLH }}$	Propagation delay $n L E$ to $n Q_{n}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$	ns
C_{1}	Input capacitance			5.0	pF
CPD	Power dissipation capacitance per buffer	$V_{I}=G N D \text { to } V_{C C^{1}}$	Outputs enabled	19	pF
			Outputs disabled	3	

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where: $f_{i}=$ input frequency in $M H z ; C_{L}=$ output load capacitance in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in $\mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=$ supply voltage in $\mathrm{V} ; \Sigma\left(\mathrm{C}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right)=$ sum of outputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
$56-$ Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ALVCH 16841 DGG	ACH16841 DGG	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	10E	Output enable inputs (active-LOW)
56	1LE	Latch enable inputs (active HIGH)
$\begin{aligned} & \hline 55,54,52,51,49, \\ & 48,47,45,44,43 \end{aligned}$	1D0-1D9	Data inputs
$\begin{gathered} 2,3,5,6,8,9,10, \\ 12,13,14 \end{gathered}$	1Q0 - 1Q9	Data outputs
$\begin{gathered} \hline 4,11,18,25,32, \\ 39,46,53 \end{gathered}$	GND	Ground (0V)
7, 22, 35, 50	V_{CC}	Positive supply voltage
28	2OE	Output enable inputs (active-LOW)
29	2LE	Latch enable inputs (active HIGH)
$\begin{aligned} & \hline 42,41,40,38,37, \\ & 36,34,33,31,30 \end{aligned}$	2D0-2D9	Data inputs
$\begin{aligned} & 15,16,17,19,20, \\ & 21.23 .24 .26 .27 \end{aligned}$	2Q0-2Q9	Data outputs

FUNCTION TABLE

INPUTS			OUTPUT
nठE	LE	Dx	Q
L	H	L	L
L	H	H	H
L	L	X	Q_{0}
H	X	X	Z

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
X = Don't care
$Z=$ High impedance "off" state
LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

BUS HOLD CIRCUIT

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V_{CC}	DC supply voltage 2.5 V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
	DC supply voltage 3.3 V range (for max. speed performance @ 50 pF output load)		3.0	3.6	
V_{1}	DC Input voltage range		0	$\mathrm{V}_{\text {CC }}$	V
V_{O}	DC output voltage range		0	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{f}$	Input rise and fall times	$\begin{aligned} & V_{\mathrm{CC}}=2.3 \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \text { to } 3.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 10 \\ & \hline \end{aligned}$	ns / V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = OV)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
IIK	DC input diode current	$\mathrm{V}_{1}<0$	-50	mA
V_{1}	DC input voltage	For control pins ${ }^{1}$	-0.5 to +4.6	V
		For data inputs ${ }^{1}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	
lok	DC output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$	± 50	mA
V_{O}	DC output voltage	Note 1	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
Io	DC output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	± 50	mA
$\mathrm{I}_{\mathrm{GND}}, \mathrm{I}_{\text {CC }}$	DC $\mathrm{V}_{\text {CC }}$ or GND current		± 100	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {TOT }}$	Power dissipation per package -plastic medium-shrink (SSOP) -plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+55^{\circ} \mathrm{C}$ derate linearly with $11.3 \mathrm{~mW} / \mathrm{K}$ above $+55^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$	$\begin{aligned} & 850 \\ & 600 \end{aligned}$	mW

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			MIN	TYP ${ }^{1}$	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V	1.7	1.2		V
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0	1.5		
$\mathrm{V}_{\text {IL }}$	LOW level Input voltage	$\mathrm{V}_{\text {CC }}=2.3$ to 2.7 V		1.2	0.7	V
		$\mathrm{V}_{C C}=2.7$ to 3.6 V		1.5	0.8	
V_{OH}	HIGH level output voltage	$\mathrm{V}_{\text {CC }}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}		v
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.3}$	$\mathrm{V}_{\text {CC }-0.08}$		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.6}$	$\mathrm{V}_{\text {CC }-0.26 ~}^{\text {a }}$		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.5}$	$\mathrm{V}_{\text {CC }-0.14}$		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.6}$	$\mathrm{V}_{\mathrm{CC}}-0.09$		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}=-24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.0$	$\mathrm{V}_{\text {CC }-0.28 ~}^{\text {d }}$		
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		GND	0.20	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}$		0.07	0.40	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.15	0.70	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.14	0.40	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}=24 \mathrm{~mA}$		0.27	0.55	
1	Input leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		0.1	5	$\mu \mathrm{A}$
loz	3-State output OFF-state current	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=2.3 \text { to } 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \hline \end{array}$		0.1	10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{l}_{\mathrm{O}}=0$		0.2	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Additional quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0$		150	750	$\mu \mathrm{A}$
IBHL^{2}	Bus hold LOW sustaining current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$	45	-		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	75	150		
IBHH^{2}	Bus hold HIGH sustaining current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	-45			$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$	-75	-175		
$\mathrm{I}_{\mathrm{BHLO}}{ }^{2}$	Bus hold LOW overdrive current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	500			$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{BHHO}}{ }^{2}$	Bus hold HIGH overdrive current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-500			$\mu \mathrm{A}$

NOTES:

1. All typical values are at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
2. Valid for data inputs of bus hold parts.

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ TO 2.7V RANGE
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.0 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{cc}}=2.3$ to 2.7 V			
			MIN	TYP ${ }^{1}$	MAX	
tpLH/tPHL	$\begin{aligned} & \text { Propagation delay } \\ & n D_{n} \text { to } n Q_{n} \end{aligned}$	1,5	1.0	2.5	5.0	ns
tpLH/tPHL	Propagation delay $n L E$ to $n Q_{n}$	2, 5	1.0	2.5	5.6	ns
tPZH/tPZL	$\begin{aligned} & \text { 3-State output enable time } \\ & n O E_{n} \text { to } n Q_{n} \end{aligned}$	4, 5	1.0	2.7	6.2	ns
tPhz/tPLZ	3-State output disable time $n O E_{n}$ to $n Q_{n}$	4,5	1.1	2.2	5.3	ns
tw	nLE pulse width HIGH	2,5	3.3	1.5	-	ns
tsu	Set up time nD_{n} to nLE	3,5	1.3	0.1	-	ns
T_{h}	Hold time nD_{n} to nLE	3, 5	1.4	0.3	-	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ TO 3.6V RANGE AND $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$			
			MIN	TYP ${ }^{\text {1, }}{ }^{1}$	MAX	MIN	TYP ${ }^{1}$	MAX	
$\mathrm{tPLH}^{\text {/ }}$ PHL	$\begin{aligned} & \text { Propagation delay } \\ & n D_{n} \text { to } n Q_{n} \end{aligned}$	1,5	1.0	2.4	3.9	1.0	2.6	4.7	ns
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Propagation delay $n L E$ to $n Q_{n}$	2, 5	1.0	2.4	4.3	1.0	2.6	5.1	ns
tpzh/tpzL	3-State output enable time $n \mathrm{OE}_{\mathrm{n}}$ to $n \mathrm{Q}_{\mathrm{n}}$	4, 5	1.0	2.3	4.9	1.0	3.1	6.0	ns
tphz/tplz	3-State output disable time $n \mathrm{OE}_{\mathrm{n}}$ to nQ_{n}	4, 5	1.3	2.9	4.1	1.3	3.1	4.3	ns
tw	nLE pulse width HIGH	2,5	3.3	1.5	-	3.3	1.5	-	ns
tsu	Set up time nD_{n} to nLE	3,5	1.0	0.6	-	1.1	0.1	-	ns
$\mathrm{th}_{\text {h }}$	Hold time nD_{n} to nLE	3,5	1.4	0.2	-	1.7	0.2	-	ns

NOTES:

1. All typical values are measured $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Typical value is measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

AC WAVEFORMS FOR $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ TO 2.7V AND $\mathrm{V}_{\mathrm{CC}}<2.3 V$ RANGE
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$V_{Y}=V_{\mathrm{OH}}-0.15 \mathrm{~V}$
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

AC WAVEFORMS FOR $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ TO 3.6V AND $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ RANGE
$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
$V_{X}=V_{O L}+0.3 V$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
$\mathrm{V}_{1}=2.7 \mathrm{~V}$
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$

Waveform 1. The input $\left(D_{n}\right)$ to output $\left(Q_{n}\right)$ propagation delay

Waveform 2. The latch enable (LE) pulse width, the latch enable input to output $\left(Q_{n}\right)$ propagation delay

Waveform 3. The data set up and hold times for the D_{n} input to the LE input

Waveform 4. 3-State enable and disable times
TEST CIRCUIT

Waveform 5. Load circuitry for switching times

DIMENSIONS (mm are the original dimensions).

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	Z	θ
mm	1.2	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.85 \end{aligned}$	0.25	$\begin{aligned} & 0.28 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.9 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.0 \end{aligned}$	0.5	$\begin{aligned} & 8.3 \\ & 7.9 \end{aligned}$	1.0	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.35 \end{aligned}$	0.25	0.08	0.1	0.5 0.1	$8^{0}{ }^{0}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

