Monolithic Digital IC

LB1843V

Low-saturation, current-controlled bidirectional motor driver

An ON Semiconductor Company

Overview

The LB1843V is a low-saturation bidirectional motor driver with output current limitation and detection functions. This design is ideal for controlling the loading motor in a video camera.

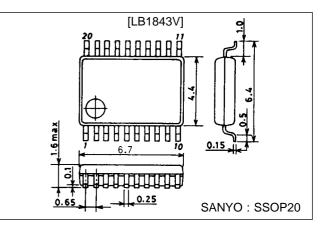
Features

- · Output current limiter and detector built in
- Low-saturation voltage bidirectional bridge circuit built in: V_0 sat = 0.40 V typ. at 400 mA
- Practically no current drain (0.1 µA or less) in standby mode
- · Input-linked reference voltage built in
- Thermal shutdown circuit built in
- · Requires little space, since few external components are needed and the IC is contained in a small SSOP-20 package

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter Symbol Conditions Unit Ratings V Maximum supply voltage V_{CC} max 10.5 Im max Maximum output current 800 mΑ VIN -0.3 to +10 V Applied input voltage Allowable power dissipation Pd max With board ($50 \times 35 \times 1.6 \text{ mm}^3$) 800 mW Operating temperature Topr -20 to +80 °С -40 to +150 °C Storage temperature Tstg

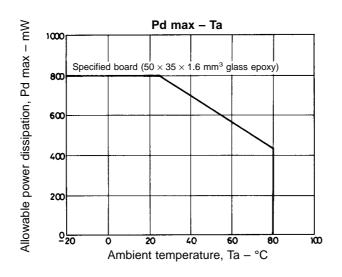

Allowable Operating Ranges at $Ta = 25^{\circ}C$

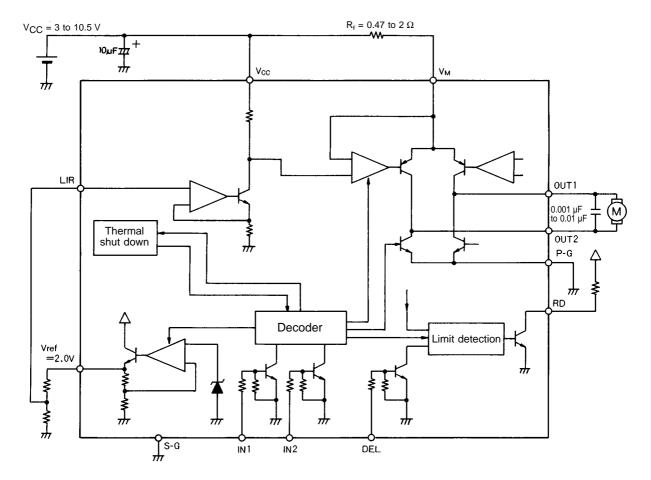
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		3.0 to 9.0	V
V _M voltage	V _M		2.2 to V _{CC}	V
High-level input voltage	V _{IH}		3.0 to 9.0	V
Low-level input voltage	V _{IL}		-0.3 to +0.7	V
LIR input voltage	V _{LIR}		0.5 to V _{CC} -1.0	V
Output current limitation	l _{limit}		50 to 350	mA

Package Dimensions

unit : mm

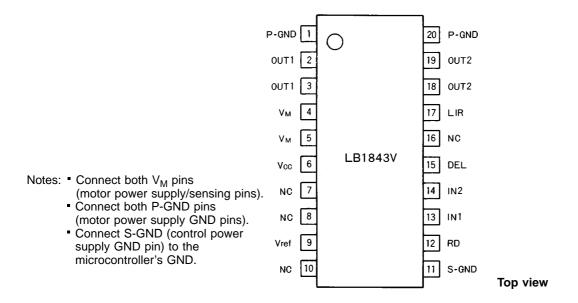
3179A-SSOP20





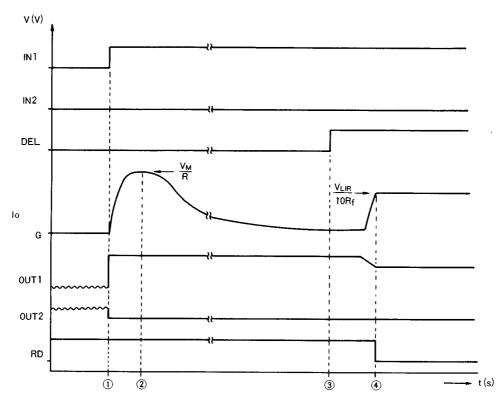
Electrical C	characteristics at	$Ta = 25^{\circ}C$	C, V_{CC}	= 7.2 V
--------------	--------------------	--------------------	-------------	---------

Parameter	Symbol	Conditions		typ	max	Unit
	I _{CC} 0	During standby		0.1	10	μA
Supply current	I _{CC} 1	During bidirectional operation, no load		9	13	mA
	I _{CC} 2	During braking		12	18	mA
Output saturation voltage	Vsat1	I _O = 200 mA (upper side + lower side)		0.20	0.30	V
	Vsat2	I _O = 400 mA (upper side + lower side)		0.40	0.60	V
Reference voltage	Vref	I _V ref = 1 mA	1.85	2.0	2.15	V
Set output current	l _{limit}	Resistance between V_{CC} and V_M = 1 $\Omega,$ when LIR = 2 V	165	185	205	mA
Input current	I _{IN}	V _{IN} = 5 V		90	150	μA
RD saturation voltage	V _{RD} sat	I _O = 1 mA			0.3	V


Output current limit is determined by the following equation (R_f is the sensing resistance between V_{CC} and V_M): $I_{limit} = V_{LIR}/10R_f$ (A) The input range for V_{LIR} is 0.5 to V_{CC} -1.0 (V)

Block Diagram and Sample Application Ciruit

Pin Assignment


Truth Table

Inp	Input		utput Mode		Output	
IN1	IN2	OUT1	OUT2	wode		
L	L	off	off	Standby		
Н	L	Н	L	Forward		
L	Н	L	Н	Reverse		
Н	Н	L	L	Brake		

Output Current Limitation and Detector Output

DEL	OUT output	RD
н	Limit	L
	Non-limit	Off
L	Saturated	Off

Sample Application Timing Chart

Sample application timing chart

- (1) Connect a DC motor ($R_L = R\Omega$) between OUT1 and OUT2, and with the RD pin pulled up, input a forward rotation signal (IN1 = high, IN2 = low).
- Because the output is used in the saturated state at startup, set the DEL input to low.
- (2) The DC motor starts up, and the startup current ($I_{ST} = V_M/R$) flows to the motor.
- ③ The DC motor rotates in the normal state. At this point, set the DEL input to high.
- (4) If the DC motor locks, the motor current I_M increases to the point of I_{limit} (= $V_{LIR}/(10R_f)$), the output current limiter operates to limit the output current. At the same time, RD is output low from the set current detection circuit.

Reference voltage (Vref)

The Vref output is linked to the input; if either IN1 or IN2 is high, the reference voltage is output.

Output current limiter

The schematic for the output current limiter is shown below.

The output set current is set according to the reference voltage V_{LIR} applied to the LIR pin. When V_{LIR} is applied, 1/10 of that voltage is generated at both ends of R_S in the diagram; this voltage is input on the positive (+) side of the current setting amplifier.

The motor current I_M generates voltage equal to $(I_M \times R_f)$ at both ends of the external resistor R_f . This voltage is input to the negative (-) side of the same amplifier, and the differential amplifier functions and the output transistors are driven so that these inputs become equal.

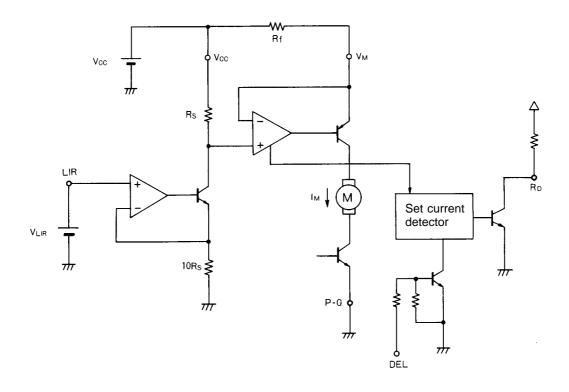
The set current value in this instance is determined by the following equation:

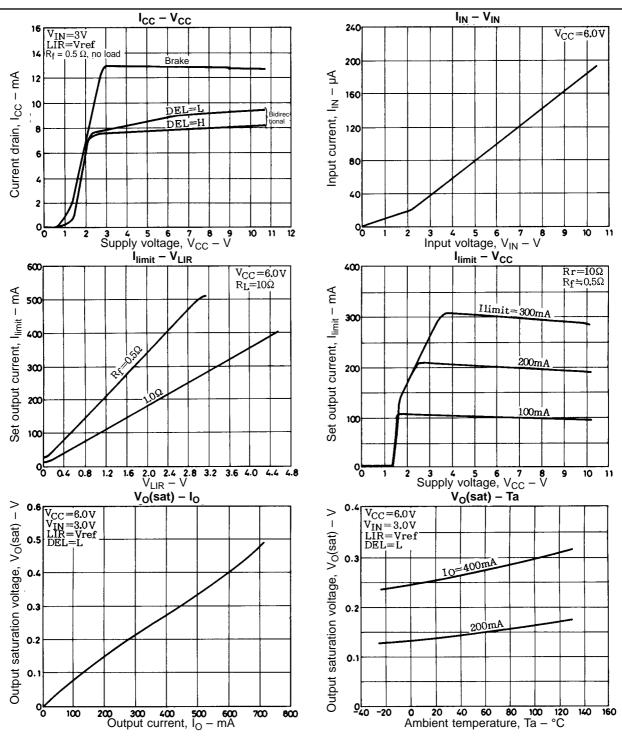
 $I_{limit} = V_{LIR} / (10R_f) [A]$

Set current detector

(1) When DEL = high

If the motor current I_M has not reached the set current I_{limit} , the input voltage on the negative (–) side of the amplifier is greater than the input voltage on the positive (+) side. As a result, the drive current increases and the output PNP transistors reach the saturation state. If this state is detected, the detection signal is sent to the set current detector, and the RD output goes high.


If the motor current I_M reaches the set current I_{limit} , the output PNP transistor enters the controlled state, and the RD output goes low.


(2) When DEL = low

Because the operation of the current setting amplifier is cancelled when a low signal is input to the DEL pin, the output PNP transistors reach the saturation state and the RD output goes high, just as in the case described above. The following table summarizes the states described above.

DEL	OUT	RD
н	limit	L
	Non-limit (saturated)	Н
L	Saturated	Н

Output Current Limiter and Set Current Detector Block Diagram

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:

 Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1996. Specifications and information herein are subject to change without notice.