ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

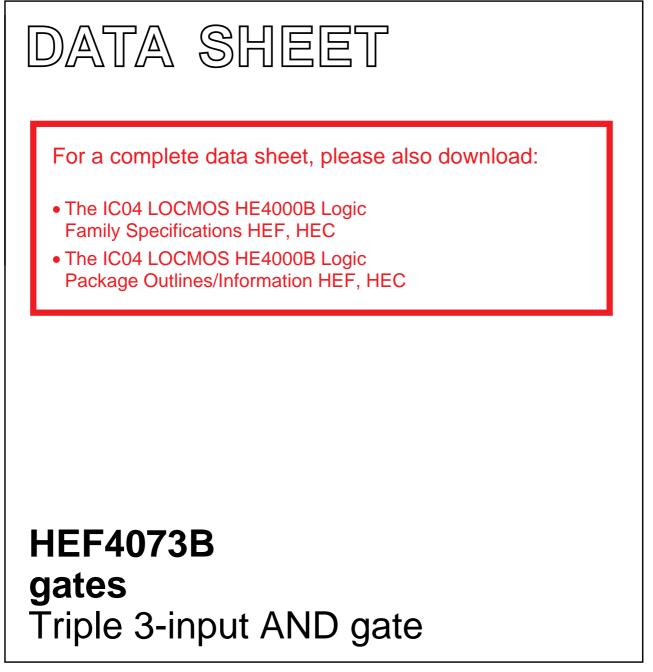
Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:


- © Nexperia B.V. (year). All rights reserved.

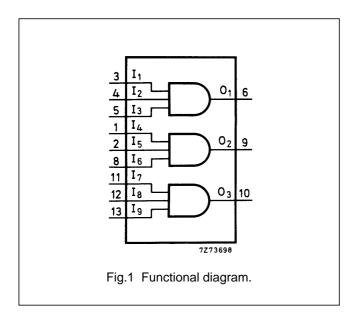
If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

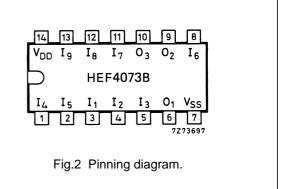
Kind regards,

Team Nexperia

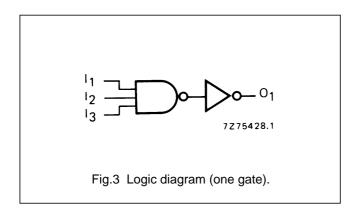
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995


HEF4073B


gates

Triple 3-input AND gate


DESCRIPTION

The HEF4073B provides the positive triple 3-input AND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4073BP(N):	14-lead DIL; plastic			
	(SOT27-1)			
HEF4073BD(F):	14-lead DIL; ceramic (cerdip)			
	(SOT73)			
HEF4073BT(D):	14-lead SO; plastic			
	(SOT108-1)			
(): Package Designator North America				

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Triple 3-input AND gate

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		55	110	ns	23 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	25	50	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
	5		45	90	ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15		15	30	ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	$600 \text{ f}_{i} + \Sigma \text{ (f}_{o}C_{L}) \times V_{DD}^{2}$	where
dissipation per	10	$2700 \; f_i + \Sigma \; (f_o C_L) \times V_{DD}{}^2$	f _i = input freq. (MHz)
package (P)	15	8400 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

HEF4073B gates